首页 > 应用文书 > 证明 > 详情页

函数极限证明(合集)

2022-07-20 10:39:28

千文网小编为你整理了多篇相关的《函数极限证明(合集)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《函数极限证明(合集)》。

第一篇:函数极限的定义证明

习题13

1.根据函数极限的定义证明:

(1)lim(3x1)8;x3

(2)lim(5x2)12;x2

x244;(3)limx2x2

14x3

(4)lim2.

x2x12

1证明 (1)分析 |(3x1)8||3x9|3|x3|, 要使|(3x1)8| , 只须|x3|.3

1证明 因为 0, , 当0|x3|时, 有|(3x1)8| , 所以lim(3x1)8.x33

1(2)分析 |(5x2)12||5x10|5|x2|, 要使|(5x2)12| , 只须|x2|.5

1证明 因为 0, , 当0|x2|时, 有|(5x2)12| , 所以lim(5x2)12.x25

(3)分析

|x(2)|.x24x24x4x24(4)|x2||x(2)|, 要使(4), 只须x2x2x2

x24x24(4), 所以lim4.证明 因为 0, , 当0|x(2)|时, 有x2x2x2

(4)分析 14x31114x312, 只须|x()|.2|12x2|2|x()|, 要使2x12x1222

14x31114x3

2, 所以lim证明 因为 0, , 当0|x()|时, 有2.12x12x122x2.根据函数极限的定义证明:

(1)lim1x3

2x3

sinxx1;2(2)limxx0.

证明 (1)分析

|x|1

1x32x311x3x322x312|x|3, 要使1x32x311, 只须, 即322|x|2.

证明 因为 0, X(2)分析

sinxx0

12

, 当|x|X时, 有1x

1x32x311x31, 所以lim.

x2x322

1x

, 即x

sinxx

|sinx|x

, 要使

sinx

证明 因为0, X

2

, 当xX时, 有

xsinxx

0, 只须

.

0, 所以lim

x

0.

3.当x2时,yx24.问等于多少, 使当|x2|n

解 由于x2, |x2|0, 不妨设|x2|1, 即1x3.要使|x24||x2||x2|5|x2|0.001, 只要

|x2|

0.001

0.0002, 取0.0002, 则当0|x2|时, 就有|x24|0.001.5

x21x

34.当x时, y

x21x23

1, 问X等于多少, 使当|x|>X时, |y1|n

解 要使1

4x23

0.01, 只|x|

3397, X.0.01

5.证明函数f(x)|x| 当x0时极限为零.

x|x|

6.求f(x), (x)当x0时的左﹑右极限, 并说明它们在x0时的极限是否存在.

xx

证明 因为

x

limf(x)limlim11,

x0x0xx0x

limf(x)limlim11,

x0x0xx0limf(x)limf(x),

x0

x0

所以极限limf(x)存在.

x0

因为

lim(x)lim

x0

x0

|x|x

lim1,x0xx|x|xlim1,xx0x

lim(x)lim

x0

x0

lim(x)lim(x),

x0

x0

所以极限lim(x)不存在.

x0

7.证明: 若x及x时, 函数f(x)的极限都存在且都等于A, 则limf(x)A.

x

证明 因为limf(x)A, limf(x)A, 所以>0,

x

x

X10, 使当xX1时, 有|f(x)A| ;X20, 使当xX2时, 有|f(x)A| .

取Xmax{X1, X2}, 则当|x|X时, 有|f(x)A| , 即limf(x)A.

x

8.根据极限的定义证明: 函数f(x)当xx0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.

证明 先证明必要性.设f(x)A(xx0), 则>0, 0, 使当0n

|f(x)A|n

因此当x0n

|f(x)A|n

这说明f(x)当xx0时左右极限都存在并且都等于A .再证明充分性.设f(x00)f(x00)A, 则>0,1>0, 使当x010, 使当x0n

取min{1, 2}, 则当0n

| f(x)A|n

即f(x)A(xx0).

9.试给出x时函数极限的局部有界性的定理, 并加以证明.

解 x时函数极限的局部有界性的定理 如果f(x)当x时的极限存在 则存在X0及M0 使当|x|X时 |f(x)|M

证明 设f(x)A(x) 则对于 1 X0 当|x|X时 有|f(x)A| 1 所以|f(x)||f(x)AA||f(x)A||A|1|A|

这就是说存在X0及M0 使当|x|X时 |f(x)|M 其中M1|A|

第二篇:函数极限的性质证明

函数极限的性质证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会

|Xn+1-A|

|X2-A|

①证明{x(n)}单调增加。

x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则

x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1

x(k+1)=√[2+3x(k)]1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明

3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞

(2)lim[(3n+1)/(2n+1)]=3/2 n→∞

(3)lim[根号(n+1)-根号(n)]=0 n→∞

(4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。

第三篇:函数极限证明

函数极限证明

记g(x)=lim^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/MN2时,0Ni时,0

那么当x>N,有

(a/M)^n

推荐专题: 用函数极限证明

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号