首页 > 应用文书 > 证明 > 详情页

函数极限证明(范文二篇)

2022-07-20 10:39:16

千文网小编为你整理了多篇相关的《函数极限证明(范文二篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《函数极限证明(范文二篇)》。

第一篇:函数极限

《数学分析》教案

第三章 函数极限

xbl

第三章 函数极限

教学目的:

1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限

,并能熟练运用;

4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点:

本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。

教学时数:16学时

§ 1 函数极限概念 (3学时)

教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。

教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。

教学重点:函数极限的概念。

教学难点:函数极限的定义及其应用。

一、复习:数列极限的概念、性质等

二、讲授新课:

(一) 时函数的极限:

- 21 《数学分析》教案

第三章 函数极限

xbl

例4 验证

例5 验证

例6 验证

证 由 =

为使

需有

需有

为使

于是, 倘限制 , 就有

例7 验证

例8 验证 ( 类似有

(三)单侧极限:

1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

- 23 《数学分析》教案

第三章 函数极限

xbl

我们引进了六种极限: .以下以极限

,

为例讨论性质.均给出证明或简证.

二、讲授新课:

(一)函数极限的性质: 以下性质均以定理形式给出.

1.唯一性:

2.

局部有界性:

3.

局部保号性:

4.

单调性( 不等式性质 ):

Th 4 若使 ,证 设

和都有 =

( 现证对 都存在, 且存在点

的空心邻域

,

註: 若在Th 4的条件中, 改“ 就有

5.6.

迫敛性:

”为“ 举例说明.

”, 未必

四则运算性质: ( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

- 25 《数学分析》教案

第三章 函数极限

xbl

例8

例9

例10 已知

求和

补充题:已知

求和 (

) § 3 函数极限存在的条件(4学时)

教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。 教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。 教学重点:海涅定理及柯西准则。 教学难点:海涅定理及柯西准则 运用。

教学方法:讲授为主,辅以练习加深理解,掌握运用。 本节介绍函数极限存在的两个充要条件.仍以极限

为例.

一.

Heine归并原则——函数极限与数列极限的关系:

Th 1 设函数在,对任何在点

的某空心邻域

内有定义.则极限都存在且相等.( 证 )

存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为

单调趋于

.参阅[1]P70.例1 证明函数极限的双逼原理.

- 27 《数学分析》教案

第三章 函数极限

xbl

教学难点:两个重要极限的证明及运用。

教学方法:讲授定理的证明,举例说明应用,练习。 一.

(证) (同理有

例1

例2 .例3

例4

例5 证明极限 不存在.二.

证 对

例6

特别当 等.例7

例8

- 28

29 《数学分析》教案

第三章 函数极限

xbl

三. 等价无穷小:

Th 2 ( 等价关系的传递性 ). 等价无穷小在极限计算中的应用: Th 3 ( 等价无穷小替换法则 )

几组常用等价无穷小: (见[2])

例3 时, 无穷小

是否等价? 例4

四.无穷大量:

1.定义:

2.性质:

性质1 同号无穷大的和是无穷大.

性质2 无穷大与无穷大的积是无穷大. 性质3 与无界量的关系.

无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.

3.无穷小与无穷大的关系:

无穷大的倒数是无穷小,非零无穷小的倒数是无穷大

习 题 课(2学时)

一、理论概述:

- 31 《数学分析》教案

第三章 函数极限

xbl

例7 .求

.注意 时, 且

.先求

由Heine归并原则

即求得所求极限

.

例8 求是否存在.

和.并说明极限

解 ;

可见极限 不存在.

- - 32

高数极限证明

重要极限证明

极限证明(共8篇)

证明函数fx

凸函数证明

第二篇:函数极限的定义证明

习题13

1.根据函数极限的定义证明:

(1)lim(3x1)8;x3

(2)lim(5x2)12;x2

x244;(3)limx2x2

14x3

(4)lim2.

x2x12

1证明 (1)分析 |(3x1)8||3x9|3|x3|, 要使|(3x1)8| , 只须|x3|.3

1证明 因为 0, , 当0|x3|时, 有|(3x1)8| , 所以lim(3x1)8.x33

1(2)分析 |(5x2)12||5x10|5|x2|, 要使|(5x2)12| , 只须|x2|.5

1证明 因为 0, , 当0|x2|时, 有|(5x2)12| , 所以lim(5x2)12.x25

(3)分析

|x(2)|.x24x24x4x24(4)|x2||x(2)|, 要使(4), 只须x2x2x2

x24x24(4), 所以lim4.证明 因为 0, , 当0|x(2)|时, 有x2x2x2

(4)分析 14x31114x312, 只须|x()|.2|12x2|2|x()|, 要使2x12x1222

14x31114x3

2, 所以lim证明 因为 0, , 当0|x()|时, 有2.12x12x122x2.根据函数极限的定义证明:

(1)lim1x3

2x3

sinxx1;2(2)limxx0.

证明 (1)分析

|x|1

1x32x311x3x322x312|x|3, 要使1x32x311, 只须, 即322|x|2.

证明 因为 0, X(2)分析

sinxx0

12

, 当|x|X时, 有1x

1x32x311x31, 所以lim.

x2x322

1x

, 即x

sinxx

|sinx|x

, 要使

sinx

证明 因为0, X

2

, 当xX时, 有

xsinxx

0, 只须

.

0, 所以lim

x

0.

3.当x2时,yx24.问等于多少, 使当|x2|n

解 由于x2, |x2|0, 不妨设|x2|1, 即1x3.要使|x24||x2||x2|5|x2|0.001, 只要

|x2|

0.001

0.0002, 取0.0002, 则当0|x2|时, 就有|x24|0.001.5

x21x

34.当x时, y

x21x23

1, 问X等于多少, 使当|x|>X时, |y1|n

解 要使1

4x23

0.01, 只|x|

3397, X.0.01

5.证明函数f(x)|x| 当x0时极限为零.

x|x|

6.求f(x), (x)当x0时的左﹑右极限, 并说明它们在x0时的极限是否存在.

xx

证明 因为

x

limf(x)limlim11,

x0x0xx0x

limf(x)limlim11,

x0x0xx0limf(x)limf(x),

x0

x0

所以极限limf(x)存在.

x0

因为

lim(x)lim

x0

x0

|x|x

lim1,x0xx|x|xlim1,xx0x

lim(x)lim

x0

x0

lim(x)lim(x),

x0

x0

所以极限lim(x)不存在.

x0

7.证明: 若x及x时, 函数f(x)的极限都存在且都等于A, 则limf(x)A.

x

证明 因为limf(x)A, limf(x)A, 所以>0,

x

x

X10, 使当xX1时, 有|f(x)A| ;X20, 使当xX2时, 有|f(x)A| .

取Xmax{X1, X2}, 则当|x|X时, 有|f(x)A| , 即limf(x)A.

x

8.根据极限的定义证明: 函数f(x)当xx0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.

证明 先证明必要性.设f(x)A(xx0), 则>0, 0, 使当0n

|f(x)A|n

因此当x0n

|f(x)A|n

这说明f(x)当xx0时左右极限都存在并且都等于A .再证明充分性.设f(x00)f(x00)A, 则>0,1>0, 使当x010, 使当x0n

取min{1, 2}, 则当0n

| f(x)A|n

即f(x)A(xx0).

9.试给出x时函数极限的局部有界性的定理, 并加以证明.

解 x时函数极限的局部有界性的定理 如果f(x)当x时的极限存在 则存在X0及M0 使当|x|X时 |f(x)|M

证明 设f(x)A(x) 则对于 1 X0 当|x|X时 有|f(x)A| 1 所以|f(x)||f(x)AA||f(x)A||A|1|A|

这就是说存在X0及M0 使当|x|X时 |f(x)|M 其中M1|A|

推荐专题: 函数极限运算法则证明

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号