首页 > 应用文书 > 证明 > 详情页

函数极限证明(范文二篇)

2022-07-20 10:46:28

千文网小编为你整理了多篇相关的《函数极限证明(范文二篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《函数极限证明(范文二篇)》。

第一篇:函数极限的性质证明

函数极限的性质证明

X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限

求极限我会

|Xn+1-A|

以此类推,改变数列下标可得|Xn-A|

|Xn-1-A|

……

|X2-A|

向上迭代,可以得到|Xn+1-A|

2只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√-√(分子有理化)

=/【√+√】>0。

②证明{x(n)}有上界。

x(1)=1

设x(k)

x(k+1)=√

3当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>

1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)(分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

4

用数列极限的定义证明

3.根据数列极限的定义证明:

(1)lim=0

n→∞

(2)lim=3/2

n→∞

(3)lim=0

n→∞

(4)lim0.999…9=1

n→∞n个9

5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0

第二篇:函数极限

《数学分析》教案

第三章 函数极限

xbl

第三章 函数极限

教学目的:

1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限

,并能熟练运用;

4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点:

本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。

教学时数:16学时

§ 1 函数极限概念 (3学时)

教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。

教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。

教学重点:函数极限的概念。

教学难点:函数极限的定义及其应用。

一、复习:数列极限的概念、性质等

二、讲授新课:

(一) 时函数的极限:

- 21 《数学分析》教案

第三章 函数极限

xbl

例4 验证

例5 验证

例6 验证

证 由 =

为使

需有

需有

为使

于是, 倘限制 , 就有

例7 验证

例8 验证 ( 类似有

(三)单侧极限:

1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

- 23 《数学分析》教案

第三章 函数极限

xbl

我们引进了六种极限: .以下以极限

,

为例讨论性质.均给出证明或简证.

二、讲授新课:

(一)函数极限的性质: 以下性质均以定理形式给出.

1.唯一性:

2.

局部有界性:

3.

局部保号性:

4.

单调性( 不等式性质 ):

Th 4 若使 ,证 设

和都有 =

( 现证对 都存在, 且存在点

的空心邻域

,

註: 若在Th 4的条件中, 改“ 就有

5.6.

迫敛性:

”为“ 举例说明.

”, 未必

四则运算性质: ( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

- 25 《数学分析》教案

第三章 函数极限

xbl

例8

例9

例10 已知

求和

补充题:已知

求和 (

) § 3 函数极限存在的条件(4学时)

教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。 教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。 教学重点:海涅定理及柯西准则。 教学难点:海涅定理及柯西准则 运用。

教学方法:讲授为主,辅以练习加深理解,掌握运用。 本节介绍函数极限存在的两个充要条件.仍以极限

为例.

一.

Heine归并原则——函数极限与数列极限的关系:

Th 1 设函数在,对任何在点

的某空心邻域

内有定义.则极限都存在且相等.( 证 )

存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为

单调趋于

.参阅[1]P70.例1 证明函数极限的双逼原理.

- 27 《数学分析》教案

第三章 函数极限

xbl

教学难点:两个重要极限的证明及运用。

教学方法:讲授定理的证明,举例说明应用,练习。 一.

(证) (同理有

例1

例2 .例3

例4

例5 证明极限 不存在.二.

证 对

例6

特别当 等.例7

例8

- 28

29 《数学分析》教案

第三章 函数极限

xbl

三. 等价无穷小:

Th 2 ( 等价关系的传递性 ). 等价无穷小在极限计算中的应用: Th 3 ( 等价无穷小替换法则 )

几组常用等价无穷小: (见[2])

例3 时, 无穷小

是否等价? 例4

四.无穷大量:

1.定义:

2.性质:

性质1 同号无穷大的和是无穷大.

性质2 无穷大与无穷大的积是无穷大. 性质3 与无界量的关系.

无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.

3.无穷小与无穷大的关系:

无穷大的倒数是无穷小,非零无穷小的倒数是无穷大

习 题 课(2学时)

一、理论概述:

- 31 《数学分析》教案

第三章 函数极限

xbl

例7 .求

.注意 时, 且

.先求

由Heine归并原则

即求得所求极限

.

例8 求是否存在.

和.并说明极限

解 ;

可见极限 不存在.

- - 32

高数极限证明

重要极限证明

极限证明(共8篇)

证明函数fx

凸函数证明

推荐专题: 用定义证明函数极限

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号