千文网小编为你整理了多篇相关的《证明三角形全等的题》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《证明三角形全等的题》。
全等三角形练习题
◆夯实基础
一、耐心选一选,你会开心:(每题6分,共30分)
1.下列说法:①全 等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的 对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()
A.①②③④B.①③④C.①②④D.②③④
2.如果 是 中 边上一点,并且 ,则 是( )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形
3.一个正方形的侧面展开图有( ) 个全等的正方形.
A.2 个B.3个 C.4个D.6个
4.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有()
A.1个 B.2个 C.3个 D.4个
5.下列说法正确的是( )
A.若 ,且 的两条直角边分别是水平和竖直状态,那么 的两条直角边也一定分别是水平和竖直状态
B.如果 , ,那么
C.有一条公共边,而且公 共边在每个三角形中都是腰的两个等腰三角形一定全等
D.有一条相等的边,而且相等的边在每 个三角形中都是底边的两个等腰三角形全等
二、精心填一填,你会轻 松(每题6分,共30分)
6.如图所示,沿 直线 对折,△ABC与△ADC重合,则△ABC≌,AB的对应边是,BC的对应边是,∠BCA的对应角是.
第6题第7题
7.如图所示,△ACB≌△DEF,其中A与D,C与E是对应顶点,则CB的对应边是,∠ABC的对应角是.
8.如图,AB、DC相交于点O,△AOB≌△DOC,A、D为对应顶点,则这两个三角形中,相等的边是____________________,相等的角是____________________.
9.已知 , , ,则 , , 和 的度数分别为 , , .
10.请在下图中把正方形分成2个、4个、8个全等的图形:
三、细心做一做,你会成功(共40分)
11.找出下列图中的全等图形.
12.找出下列图形中的全等图形.
(1)(2) (3)(4)(5)(6)
(7)(8)(9)(10)(11) (12)
13.如图,AB=DC,AC=DB,求证AB∥CD.
◆综合创新
14.如图,点 在一条直线上,△ △ 你能得出哪些 结论?(请写出三个以上的结论)
[来源:学科网ZXXK]
15.把一张方格纸贴在纸板上.按图1所示画上正方 形,然后沿 图示的直线切成5小块.当你照图2的样子把这些拼成正方形的时候中间居然出现了一个洞!
我们发现,图1的正方形是由49个小正方形组成的.图2中拼成的正方形却只有48个小正方形.哪一个小正方形没有了?它到哪去了?
中考链接
16.如图, ,则 的度数为()
A. B.
C. D.
17.如图,若 ,且 ,则 .
18.右图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.
参考答案
夯实基础
1.A
2.D
3.C
4.A.
5.B
6.△ADC,AD,AC,∠DCA
7.EF,∠DFE
8.AB=DC、AO=DO、OB=OC,∠AOB=∠DOC、∠A=∠D、∠B=∠C.
9. ; , ,
10.分法可分别如下所示:
11.根据全等形的定义得全等形有天鹅、荷花.
12.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形
13.分析:要证AB∥CD,只需∠ABC=∠DCB,要证∠ABC=∠DCB,只需△ABC≌△DCB.
证明:∵在△ABC和△DCB中, ,
∴△ABC≌△DCB(SSS).
∴∠ABC=∠DCB.
∴AB∥CD.
综合创新
14.由△ △ 可得到
△ △ 等.
15.5小块图形中最大的两块对换了位置之后,被那条对角线切开的每个小正方形都变得高比 宽大一点点.这 意味着这个大正方形不再是严格的正方形.它的高增加了,从而使得面积增加,所增加的面积恰好等于那个方洞的面积.
中考链接
16.C
17.
18.2
推荐专题: 证明三角形全等的题