首页 > 应用文书 > 证明 > 详情页

加法交换律证明(推荐2篇)

2023-01-08 12:25:55

千文网小编为你整理了多篇相关的《加法交换律证明(推荐2篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《加法交换律证明(推荐2篇)》。

第一篇:《加法交换律和乘法交换律》教学设计

设计说明

1.注重培养学生自主合作探究的能力。

《数学课程标准》指出:自主探究、合作交流是学生学习数学的重要方式。在合作交流中探究加法交换律和乘法交换律的意义,让学生从交流中得出结论,这样既尊重了学生学习的主体地位,又增强了学生合作探究能力的培养,学生不仅学会了运用已学的运算律来解决问题,随机渗透了类推、迁移的数学思想,也让学生在探究的过程中进一步加深了对加法交换律和乘法交换律的意义的理解。

2.注重知识的运用。

《数学课程标准》强调:人人都能获得必需的数学。在学生掌握了加法交换律和乘法交换律的基础上,从不同角度、不同层次设计习题,学生经历了解决问题的全过程,充分体验了数学与生活的密切联系,感受了数学的作用与价值。

课前准备

教师准备PPT课件

教学过程

⊙复习旧知,导入新课

出示题目:

→4+6=6+4

→3×5=5×3

师:分别观察这两组式子,请你照样子再写一组。

设计意图:将加法交换律和乘法交换律同时呈现、同时研究,充分做到了尊重学生的认知规律,给学生创造了一个创新和实践的学习环境,既激发了学生的学习兴趣和探究欲望,又使学生获得了成功的体验。

⊙活动探究,获取新知

1.加法交换律。

(1)观察算式,发现规律。

观察第一组算式,说一说你发现了什么。

预设

生:两个数相加,交换加数的位置,和不变。

(2)验证并总结规律。

师:在4+6=6+4这道算式中,交换了加数的位置,和不变。是不是在所有的加法算式中,交换加数的位置,和都不会发生改变呢?现在我们就一起来验证一下。请同学们写出几道加法算式并试着交换两个加数的位置,计算它们的结果,验证我们的猜想。

学生验证,汇报交流,教师总结:两个数相加,交换加数的位置,和不变。这就是加法交换律。

(3)用字母表示加法交换律。

师:谁能用字母表示一下加法交换律?

(a+b=b+a)

(4)反馈练习。

20+30=(  )+(  )

524+678=(  )+524

□+(  )=○+(  )

3+(  )=Y+(  )

2.乘法交换律。

(1)观察算式,发现规律。

师:观察第二组算式,说一说你发现了什么。

预设

生:两个数相乘,交换乘数的位置,积不变。

(2)验证并总结规律。

师:请每位同学编出乘法算式并试着交换两个乘数的位置,看看它们的结果有没有发生变化。

学生验证,汇报交流,教师总结:两个数相乘,交换乘数的位置,它们的积不变。这就是乘法交换律。

(3)用字母表示乘法交换律。

师:怎样用字母来表示乘法交换律呢?

(a×b=b×a)

师:这里的a、b都可以表示哪些数?

(学生先在小组内讨论,然后汇报)

(4)反馈练习。

10×5=(  )×(  )

(  )×△=(  )×☆

C×(  )=F×(  )

第二篇:《加法交换律和乘法交换律》教学设计

教学目标

1、经历加法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。

2、通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发展应用意识。

教学重难点

教学重点:理解并掌握加法交换律和乘法交换律的意义以及运用。

教学难点:会用符号或字母表示加法交换律和乘法交换律。

教学过程

一、练习导入、感受交换的好处

首先出示加法和乘法的计算题让学生快速口算出答案,接着给出两个复杂的算式。现在还能马上口算出答案吗?针对这两个算式你有什么想法?

二、合作探究,探索新知

1、将加法和乘法算式同时呈现,让学生一组一组观察,每组中的两个算式有什么相同和不同的地方?为什么可以把等号连起来?你还发现了什么?

2、通过模仿创造出几组加法和乘法算式,加以验证。观察教师的例子、自己仿写的以及书本中淘气和笑笑写的算式,和同伴交流自己的发现。

3、总结;课件出示内容;

4、寻找生活中的事例解释所发现的规律。

5、我会接着追问:关于交换律的算式和事例学生们能举的完吗?你们能创造一个更简单的方法来表达发现的规律吗?

6、选择方法进行投影对比,让学生解释自己的方法,P23在对比评价中得出更简便的字母表示法(板贴a+b=b+a;a.b=b.a)这里要注重说清楚ab各表示什么,以及两个运算律的异同。

三、巩固规律

1、规则是我说算式,学生说交换后的算式,适时加入减法和除法,在学生产生冲突时继续追问:a+b=b+a;a.b=b.a那么a-b=b?a÷b=?。

四、深化练习,拓展提高

1、结合下面的例子说明等式为什么成立。通过现实背景理解交换律的实际意义。

2、运用规律填一填,了解学生对交换律的掌握情况。

3、计算下列各题,并运用规律进行验算,通过比较,发现利用交换律在计算中可以选择符合习惯的方式列竖式,还具有验算的作用,

4、接着出示课始的复杂运算鼓励学生运用所学的交换律使问题简单化。

五、全课小结

说说本节课有哪些收获?

推荐专题: 加法交换律证明

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号