首页 > 应用文书 > 证明 > 详情页

函数极限证明(合集)

2022-07-20 10:32:17

千文网小编为你整理了多篇相关的《函数极限证明(合集)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《函数极限证明(合集)》。

第一篇:函数极限的性质证明

函数极限的性质证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会

|Xn+1-A|

|X2-A|

①证明{x(n)}单调增加。

x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则

x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1

x(k+1)=√[2+3x(k)]1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明

3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞

(2)lim[(3n+1)/(2n+1)]=3/2 n→∞

(3)lim[根号(n+1)-根号(n)]=0 n→∞

(4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。

第二篇:定积分证明题方法总结

1、原函数存在定理

●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

●分部积分法

如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。

2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

定积分

1、定积分解决的典型问题

(1)曲边梯形的面积(2)变速直线运动的路程

2、函数可积的充分条件

●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

3、定积分的若干重要性质

●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点,使下式成立:∫abf(x)dx=f()(b-a)。

4、关于广义积分

设函数f(x)在区间[a,b]上除点c(a

定积分的应用

1、求平面图形的面积(曲线围成的面积)

●直角坐标系下(含参数与不含参数)

●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)

●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的'方程)

●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)

●功、水压力、引力

●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

第三篇:定积分证明题方法总结

一、不定积分的概念和性质

若F(x)f(x),则f(x)dxF(x)C, C为积分常数不可丢!

性质1f(x)dxf(x)或 df(x)dxf(x)dx或

df(x)dxf(x) dx

性质2F(x)dxF(x)C或dF(x)F(x)C

性质3[f(x)g(x)]dx

或[f(x)g(x)]dx

二、基本积分公式或直接积分法

基本积分公式 f(x)dxg(x)dx g(x)dx;kf(x)dxkf(x)dx. f(x)dx

kdxkxC

xxdx1x1C(为常数且1)1xdxlnxC ax

edxeCadxlnaC xx

cosxdxsinxCsinxdxcosxC

dxdx22tanxCsecxdxcsccos2xsin2xxdxcotxC

secxtanxdxsecxCcscxcotxdxcscxC

dxarctanxCarccotx

C()1x2arcsinxC(arccosxC)

直接积分法:对被积函数作代数变形或三角变形,化成能直接套用基本积分公式。 代数变形主要是指因式分解、加减拆并等;三角变形主要是指三角恒等式。

三、换元积分法:

1.第一类换元法(凑微分法)

g(x)dxf((x))(x)dxf((x))d(x)

注 (1)常见凑微分:

u(x)f(u)du[F(u)C]u(x).

111dxd(axc), xdxd(x2c),2dc), dxd(ln|x|

c) a2x1dxd(arctanx)d(arccotxd(arcsinx)d(arccosx) 1+x2

(2)适用于被积函数为两个函数相乘的情况:

若被积函数为一个函数,比如:e2xdxe2x1dx, 若被积函数多于两个,比如:sinxcosx1sin4xdx,要分成两类;

(3)一般选择“简单”“熟悉”的那个函数写成(x);

(4)若被积函数为三角函数偶次方,降次;奇次方,拆项;

2.第二类换元法

f(x)dxx(t)f((t))(t)dtf((t))(t)dtt1(x)G(t)Ct1(x) 常用代换类型:

(1) 对被积函数直接去根号;

(2) 到代换x1; t

(3) 三角代换去根号

x

atantxasect、

xasint(orxacost)

f(xdx,t

f(xx,x

asect

f(xx,xasint

f(xx,xatant f(ax)dx,ta

x

f(xx,t

三、分部积分法:uvdxudvuvvduuvuvdx.

注 (1)u的选取原则:按“ 反对幂三指” 的顺序,谁在前谁为u,后面的为v;

(2)uvdx要比uvdx容易计算;

(3)适用于两个异名函数相乘的情况,若被积函数只有一个,比如:

arcsinx1dx,

u

v

(4)多次使用分部积分法: uu求导 vv积分(t;

推荐专题: 证明函数极限的方法

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号