千文网小编为你整理了多篇相关的《函数极限证明(范文2篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《函数极限证明(范文2篇)》。
《数学分析》教案
第三章 函数极限
xbl
第三章 函数极限
教学目的:
1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限
和
,并能熟练运用;
4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点:
本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。
教学时数:16学时
§ 1 函数极限概念 (3学时)
教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。
教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。
教学重点:函数极限的概念。
教学难点:函数极限的定义及其应用。
一、复习:数列极限的概念、性质等
二、讲授新课:
(一) 时函数的极限:
- 21 《数学分析》教案
第三章 函数极限
xbl
例4 验证
例5 验证
例6 验证
证 由 =
为使
需有
需有
为使
于是, 倘限制 , 就有
例7 验证
例8 验证 ( 类似有
(三)单侧极限:
1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域
- 23 《数学分析》教案
第三章 函数极限
xbl
我们引进了六种极限: .以下以极限
,
为例讨论性质.均给出证明或简证.
二、讲授新课:
(一)函数极限的性质: 以下性质均以定理形式给出.
1.唯一性:
2.
局部有界性:
3.
局部保号性:
4.
单调性( 不等式性质 ):
Th 4 若使 ,证 设
和都有 =
( 现证对 都存在, 且存在点
的空心邻域
,
有
註: 若在Th 4的条件中, 改“ 就有
5.6. 以
迫敛性:
”为“ 举例说明.
”, 未必
四则运算性质: ( 只证“+”和“ ”)
(二)利用极限性质求极限: 已证明过以下几个极限:
- 25 《数学分析》教案
第三章 函数极限
xbl
例8
例9
例10 已知
求和
补充题:已知
求和 (
) § 3 函数极限存在的条件(4学时)
教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。 教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。 教学重点:海涅定理及柯西准则。 教学难点:海涅定理及柯西准则 运用。
教学方法:讲授为主,辅以练习加深理解,掌握运用。 本节介绍函数极限存在的两个充要条件.仍以极限
为例.
一.
Heine归并原则——函数极限与数列极限的关系:
Th 1 设函数在,对任何在点
且
的某空心邻域
内有定义.则极限都存在且相等.( 证 )
存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为
单调趋于
.参阅[1]P70.例1 证明函数极限的双逼原理.
- 27 《数学分析》教案
第三章 函数极限
xbl
教学难点:两个重要极限的证明及运用。
教学方法:讲授定理的证明,举例说明应用,练习。 一.
(证) (同理有
)
例1
例2 .例3
例4
例5 证明极限 不存在.二.
证 对
有
例6
特别当 等.例7
例8
- 28
29 《数学分析》教案
第三章 函数极限
xbl
三. 等价无穷小:
Th 2 ( 等价关系的传递性 ). 等价无穷小在极限计算中的应用: Th 3 ( 等价无穷小替换法则 )
几组常用等价无穷小: (见[2])
例3 时, 无穷小
与
是否等价? 例4
四.无穷大量:
1.定义:
2.性质:
性质1 同号无穷大的和是无穷大.
性质2 无穷大与无穷大的积是无穷大. 性质3 与无界量的关系.
无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.
3.无穷小与无穷大的关系:
无穷大的倒数是无穷小,非零无穷小的倒数是无穷大
习 题 课(2学时)
一、理论概述:
- 31 《数学分析》教案
第三章 函数极限
xbl
例7 .求
.注意 时, 且
.先求
由Heine归并原则
即求得所求极限
.
例8 求是否存在.
和.并说明极限
解 ;
可见极限 不存在.
- - 32
高数极限证明
重要极限证明
极限证明(共8篇)
证明函数fx
凸函数证明
函数极限的性质证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会
|Xn+1-A|
|X2-A|
①证明{x(n)}单调增加。
x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则
x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1
x(k+1)=√[2+3x(k)]1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则:
lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明
3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞
(2)lim[(3n+1)/(2n+1)]=3/2 n→∞
(3)lim[根号(n+1)-根号(n)]=0 n→∞
(4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。
推荐专题: 根据函数极限的定义证明