首页 > 应用文书 > 证明 > 详情页

函数极限证明(合集)

2022-07-20 10:28:20

千文网小编为你整理了多篇相关的《函数极限证明(合集)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《函数极限证明(合集)》。

第一篇:函数极限的性质证明

函数极限的性质证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会

|Xn+1-A|

|X2-A|

①证明{x(n)}单调增加。

x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则

x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1

x(k+1)=√[2+3x(k)]1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明

3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞

(2)lim[(3n+1)/(2n+1)]=3/2 n→∞

(3)lim[根号(n+1)-根号(n)]=0 n→∞

(4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。

第二篇:函数极限的性质证明

函数极限的性质证明

X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限

求极限我会

|Xn+1-A|

以此类推,改变数列下标可得|Xn-A|

|Xn-1-A|

……

|X2-A|

向上迭代,可以得到|Xn+1-A|

2只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√-√(分子有理化)

=/【√+√】>0。

②证明{x(n)}有上界。

x(1)=1

设x(k)

x(k+1)=√

3当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>

1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)(分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

4

用数列极限的定义证明

3.根据数列极限的定义证明:

(1)lim=0

n→∞

(2)lim=3/2

n→∞

(3)lim=0

n→∞

(4)lim0.999…9=1

n→∞n个9

5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0

第三篇:函数极限的定义证明

习题13

1.根据函数极限的定义证明:

(1)lim(3x1)8;x3

(2)lim(5x2)12;x2

x244;(3)limx2x2

14x3

(4)lim2.

x2x12

1证明 (1)分析 |(3x1)8||3x9|3|x3|, 要使|(3x1)8| , 只须|x3|.3

1证明 因为 0, , 当0|x3|时, 有|(3x1)8| , 所以lim(3x1)8.x33

1(2)分析 |(5x2)12||5x10|5|x2|, 要使|(5x2)12| , 只须|x2|.5

1证明 因为 0, , 当0|x2|时, 有|(5x2)12| , 所以lim(5x2)12.x25

(3)分析

|x(2)|.x24x24x4x24(4)|x2||x(2)|, 要使(4), 只须x2x2x2

x24x24(4), 所以lim4.证明 因为 0, , 当0|x(2)|时, 有x2x2x2

(4)分析 14x31114x312, 只须|x()|.2|12x2|2|x()|, 要使2x12x1222

14x31114x3

2, 所以lim证明 因为 0, , 当0|x()|时, 有2.12x12x122x2.根据函数极限的定义证明:

(1)lim1x3

2x3

sinxx1;2(2)limxx0.

证明 (1)分析

|x|1

1x32x311x3x322x312|x|3, 要使1x32x311, 只须, 即322|x|2.

证明 因为 0, X(2)分析

sinxx0

12

, 当|x|X时, 有1x

1x32x311x31, 所以lim.

x2x322

1x

, 即x

sinxx

|sinx|x

, 要使

sinx

证明 因为0, X

2

, 当xX时, 有

xsinxx

0, 只须

.

0, 所以lim

x

0.

3.当x2时,yx24.问等于多少, 使当|x2|n

解 由于x2, |x2|0, 不妨设|x2|1, 即1x3.要使|x24||x2||x2|5|x2|0.001, 只要

|x2|

0.001

0.0002, 取0.0002, 则当0|x2|时, 就有|x24|0.001.5

x21x

34.当x时, y

x21x23

1, 问X等于多少, 使当|x|>X时, |y1|n

解 要使1

4x23

0.01, 只|x|

3397, X.0.01

5.证明函数f(x)|x| 当x0时极限为零.

x|x|

6.求f(x), (x)当x0时的左﹑右极限, 并说明它们在x0时的极限是否存在.

xx

证明 因为

x

limf(x)limlim11,

x0x0xx0x

limf(x)limlim11,

x0x0xx0limf(x)limf(x),

x0

x0

所以极限limf(x)存在.

x0

因为

lim(x)lim

x0

x0

|x|x

lim1,x0xx|x|xlim1,xx0x

lim(x)lim

x0

x0

lim(x)lim(x),

x0

x0

所以极限lim(x)不存在.

x0

7.证明: 若x及x时, 函数f(x)的极限都存在且都等于A, 则limf(x)A.

x

证明 因为limf(x)A, limf(x)A, 所以>0,

x

x

X10, 使当xX1时, 有|f(x)A| ;X20, 使当xX2时, 有|f(x)A| .

取Xmax{X1, X2}, 则当|x|X时, 有|f(x)A| , 即limf(x)A.

x

8.根据极限的定义证明: 函数f(x)当xx0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.

证明 先证明必要性.设f(x)A(xx0), 则>0, 0, 使当0n

|f(x)A|n

因此当x0n

|f(x)A|n

这说明f(x)当xx0时左右极限都存在并且都等于A .再证明充分性.设f(x00)f(x00)A, 则>0,1>0, 使当x010, 使当x0n

取min{1, 2}, 则当0n

| f(x)A|n

即f(x)A(xx0).

9.试给出x时函数极限的局部有界性的定理, 并加以证明.

解 x时函数极限的局部有界性的定理 如果f(x)当x时的极限存在 则存在X0及M0 使当|x|X时 |f(x)|M

证明 设f(x)A(x) 则对于 1 X0 当|x|X时 有|f(x)A| 1 所以|f(x)||f(x)AA||f(x)A||A|1|A|

这就是说存在X0及M0 使当|x|X时 |f(x)|M 其中M1|A|

第四篇:函数极限

习题

1.按定义证明下列极限:

(1) limx6x5=6 ;(2) lim(x2-6x+10)=2; x2x

x251 ;(4) lim(3) lim2xx1x2

(5) limcos x = cos x0 xx04x2=0;

2.根据定义2叙述limf (x) ≠ A.xx0

3.设limf (x) = A.,证明limf (x0+h) = A.xx0h0

4.证明:若limf (x) = A,则lim| f (x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0

5.证明定理3.1

6.讨论下列函数在x0→0 时的极限或左、右极限: (1)f(x)=x

x;(2) f(x) = [x]

2x;x0.(3) f (x)=0;x0.

1x2,x0.

7.设 limf (x) = A,证明limf (xxx01) = A x

8.证明:对黎曼函数R(x)有limR (x) = 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0

习题

1. 求下列极限:

x21 (1)lim2(sinx-cosx-x);(2)lim; x02x2x1x22

x21x113x;

lim(3) lim;(4)

x12x2x1x0x22x3

xn1(5) limm(n,m 为正整数);(6)lim

x1xx41

(7)lim

x0

2x3x2

70

20

a2xa3x68x5.

(a>0);(8) lim

xx5x190

2. 利用敛性求极限: (1) lim

x

xcosxxsinx

;(2) lim2

x0xx4

xx0

3. 设 limf(x)=A, limg(x)=B.证明:

xx0

(1)lim[f(x)±g(x)]=A±B;

xx0

(2)lim[f(x)g(x)]=AB;

xx0

(3)lim

xx0

f(x)A

=(当B≠0时) g(x)B

4. 设

a0xma1xm1am1xam

f(x)=,a0≠0,b0≠0,m≤n,nn1

b0xb1xbn1xbn

试求 limf(x)

x

5. 设f(x)>0, limf(x)=A.证明

xx0

xx0

lim

f(x)=A,

其中n≥2为正整数.6.证明limax=1(0n

x0

7.设limf(x)=A, limg(x)=B.

xx0

xx0

(1)若在某∪(x0)内有f(x)

(2)证明:若A>B,则在某∪(x0)内有f(x) > g(x).8.求下列极限(其中n皆为正整数): (1) lim 

x0

x

x11

lim;(2);nnx0x1xx1x

xx2xnn

(3) lim ;(4) lim

x0x0x1

x1

x

(5) lim

x

x(提示:参照例1)

x

x0

x0

x0

9.(1)证明:若limf (x3)存在,则limf (x)= lim f (x3)(2)若limf (x2)存在,试问是否成立limf (x) =limf (x2) ?

x0

x0

x0

习题

1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.

n

n

2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在

n

[a,+)上有上(下)界.

3.(1)叙述极限limf (x)的柯西准则;

n

(2)根据柯西准则叙述limf (x)不存在的充要条件,并应用它证明limsin x不存在.

n

n

4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都

n

n

存在,则所有这极限都相等.

提示: 参见定理3.11充分性的证明.

5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0) =supf(x),f(x0+0)=

0xu

x0

0xun(x0)

inff (x)

6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.

xx0

7.证明:若f为周期函数,且limf(x)=0,则f(x)=0

x

8.证明定理3.9

习题

1.求下列极限

sin2xsinx3

(1) lim;(2) lim

x0x0sinx2x

(3) lim

x

cosxx

tanxsinxarctanx

lim(5) lim;(6) ; 3x0x0xx

sin2xsin2a1

(7) limxsin ;(8) lim;

xxaxxa

;(4) lim

x0

tanx

; x

cosx2

(9) lim;(10) lim

x0x01cosxx11

sin4x

2.求下列极限

12x

(1) lim(1);(2) lim1axx(a为给定实数);

nx0x

x

(3) lim1tanx

x0

cotx

;(4) lim

1x

;

x01x

(5) lim(

x

3x22x1

);(6) lim(1)x(,为给定实数)

n3x1x

3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限: (1) limnsin

n

x0n



x2

xxcos1 2n22

n

;(2)

习题

1. 证明下列各式

(1) 2x-x2=O(x) (x→0);(2)x sinxO(x)(x→0);

+

(3)x1o(1) (x→0);

(4) (1+x)n= 1+ nx+o (x) (x→0)(n 为正整数) (5) 2x3 + x2=O(x3)(x→∞) ;

(6) o (g(x))±o(g(x)) =o(g(x))(x→x0)

(7) o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0) 2. 应用定理3.12求下列极限:

x21x(1) lim(2)lim x01cosxxxcosx

x3. 证明定理3.13

4. 求下列函数所表示曲线的渐近线:

13x34

(1) y = ;(2) y = arctan x ;(3)y = 2

xx2x

5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量:

(1) sin2x-2sinx ;(2)

- (1-x); 1x

(3)tanxsinx;(4)

x24x3

6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量:

(1)

x2x5;(2)x+x2 (2+sinx);

(3) (1+x)(1+x2)…(1+xn).

7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞)

8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r

时的无穷大量。

9. 设 f(x)~g(x) (x→x0),证明:

f ( x )-g ( x ) = o ( f ( x ) )或 f ( x )-g ( x ) = o ( g ( x ) )

总 练 习 题

1. 求下列极限:

1

(x[x])lim([x]1)(1) lim;(2)

x3

x1

(3) lim(

x

axbxaxbx)

xxa

(4) lim

x

(5)lim

xxa

x

(6) lim

xxxx

x0

(7) lim

nm

,m,n 为正整数 nx11xm1x

2. 分别求出满足下述条件的常数a与b:

x21

(1) limaxb0 xx1

x(3) limx

(2) lim

xxx2

x1axb0

x1axb0

x2

3. 试分别举出符合下列要求的函数f:

(1) limf(x)f(2);(2) limf(x)不存在。

4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的

xx0

局部保号性有矛盾吗?

5. 设limf(x)A,limg(u)B,在何种条件下能由此推出

xa

gA

limg(f(x))B?

xa

6. 设f (x)=x cos x。试作数列

(1){xn} 使得 xn→∞(n→∞), f(xn)→0 (n→∞); (2){yn} 使得 yn→∞(n→∞), f(yn)→0 (n→∞); (3){zn} 使得 zn→∞(n→∞), f(zn)→0 (n→∞).

7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列:

(1) limanr1

n

(2) lim

an1

s1(an≠0,n=1,2,…)

nan

n2

n2

8. 利用上题(1)的结论求极限:

(1) lim1

n

11(2) lim1

nnn

9. 设liman,证明

n

(1) lim

(a1a2an) nn

n

(2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限:

(1)limn!(2) lim

n

In(n!)

nn

11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得

limf(xn)A,则有

n

f (x0-0) =

supf(x)A

0xU(x0)

12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞)

x

13.设函数f在(0,+∞)此上满足方程f (x2) = f (x),且

f(x)=limf(x)f(1)lim

x0

x

证明:f(x)f(1),x∈(0,+∞)

14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足

x

lim(f(x1)f(1))A证明

x

lim

f(x)

A x

第五篇:函数极限证明

函数极限证明

记g(x)=lim^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/MN2时,0Ni时,0

那么当x>N,有

(a/M)^n

推荐专题: 证明二元函数极限存在

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号