首页 > 应用文书 > 证明 > 详情页

微积分零点定理的证明题(优秀范文五篇)

2023-06-08 23:33:29

千文网小编为你整理了多篇相关的《微积分零点定理的证明题(优秀范文五篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《微积分零点定理的证明题(优秀范文五篇)》。

第一篇:积分中值定理开区间证明的几种方法

积分中值定理(开区间)的几种证明方法

定理:设f在[a,b]上连续,则(a,b),使得

b

af(x)dxf()(ba)。

[证一]:由积分第一中值定理(P217),[a,b],使得

于是

bbaf(x)dxf()(ba)。[f(x)f()]dx0.a

由于函数F(x)f(x)f()在[a,b]上连续,易证(可反证):

(这还是书上例2的结论)

(a,b),使得F()f()f()0,即f()f()。

[证二]:令F(x)x

af(t)dt,则F(x)在[a,b]上满足拉格朗日中值定理的条件,故

(a,b),使得F(b)F(a)F()(ba),即结论成立。

(注:书上在后面讲的微积分基本定理)

[证三]:反证:假设不(a,b),使得 b

af(x)dxf()(ba),由积分第一中值定理,知只能为a或b,不妨设为b,即

x(a,b),f(x)f(b)1bf(x)dx。aba)f(x)f(b))由于f连续,故x(a,b),f(x)f(b(或,(这一点是不是用介值定理来说明)

这样

(上限x改为b)xbaf(x)dxf(b)dxf(b)(ba).a

(这个严格不等号不太显然要用书上例2结论来说明)

矛盾。

[证四]:设f在[a,b]上的最大值为M,最小值为m。若mM,则fc,可任取。

若mM,则x1[a,b],有Mf(x1)0,故

[Mf(x)]dx0,即 abb

af(x)dxM(b).a

同理有

m(ba)f(x)dx.ab

由连续函数的介质定理知:(a,b),使得 f()1bf(x)dx.。aba

注:以上方法有的能推广到定理9.8的证明,有的不能,再思考吧!

第二篇:有关中值定理的证明题

中值定理证明题集锦

1、已知函数f(x)具有二阶导数,且limx0f(x)0,f(1)0,试证:在区间(0,1)内至少x存在一点,使得f()0.证:由limf(x),由此又得00,可得limf(x)0,由连续性得f(0)x0x0xf(x)f(0)f(x)f(0)limlim0,由f(0)f(1)0及题设条件知f(x)在[0,1]x0x0x0x上满足罗尔中值定理条件,因此至少存在一点 c(0,1),使得f(c)0,又因为f(0)f(c)0,并由题设条件知f(x)在[0,c]上满足拉格朗日中值定理的条件,由拉格朗日中值定理知,在区间(0,1)内至少存在一点,使得f()0.2、设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)0,证明:存在一点(0,a),使得f()f()0.证:分析:要证结论即为:[xf(x)]x0.令F(x)xf(x),则F(x)在[0,a]上连续,在(0,a)内可导,且F(0)F(a)0,因此故存在一点(0,a),使得F()0,F(x)xf(x)在[0,a]上满足罗尔中值定理的条件,即f()f()0.注1:此题可改为:

设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)0,证明:存在一点(0,a),使得

nf()f()0.)nf()(0给分析:要证结论nf()f()等价于nn1f(nn1n,而nf()f()0即为[xf(x)]x0.nf()f()两端同乘以n1)故令F(x)xf(x),则F(x)在[0,a]上满足罗尔中值定理的条件,由此可证结论.注2:此题与下面例题情况亦类似:

设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)0,x(0,1),有f(x)0,证:nnN,(0,1),使得

nf()f(1)成立.f()f(1)分析:要证结论可变形为nf()f(1)f()f(1)0,它等价于nfn1()f()f(1)fn()f(1)0(给nf()f(1)f()f(1)0两端同乘以fn1()),而nfn1(f)f()(fn1f)(即)为(1)0[fn(x)fx1(x,用罗尔中值定理)]0.以上三题是同类型题.3、已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)0,f()1,证明:(1)存在一点(,1),使f().(2)存在一点(0,),使f()1.(3)存在一点x0(0,),使f(x0)1(f(x0)x0).证:(1)分析:要证结论即为:f()0.12121211111显然F(x)在[,1]上连续,且F()f()0,F(1)f(1)110,2222211因此F(x)在[,1]上满足零点定理的条件,由零点定理知,存在(,1),使F()0,22令F(x)f(x)x,则只需证明F(x)在(,1)内有零点即可。即f().(2)又因为F(0)f(0)00,由(1)知F()0,因此F(x)在[0,]上满足罗尔中值定理条件,故存在一点(0,),使F()0,即f()10,即f()1.(3)分析:结论f(x0)1(f(x0)x0)即就是F(x0)F(x0)或F(x0)F(x0)0,F(x0)F(x0)0ex0[F(x0)F(x0)]0,即[exF(x)]xx00.故令G(x)exF(x),则由题设条件知,G(x)在[0,]上连续,在(0,)内可导,且G(0)e0F(0)0,G()eF()0,则G(x)在[0,]上满足罗尔中值定理条件,命题得证.4、设f(x)在[0,x]上可导,且f(0)0,试证:至少存在一点(0,x),使得f(x)(1)ln(1x)f().证:分析:要证结论即为: f(x)f(0)(1)[ln(1x)ln1]f(),也就是f(x)f(0)f(),因此只需对函数f(t)和ln(1t)在区间[0,x]上应用柯西中值定理1ln(1x)ln11即可.5、设f(x)、g(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,且g(x)0,证明:至少存在一点(a,b),使得f()g()f()g().证:分析:要证结论即为: f()g()f()g()0,等价于

f()g()f()g()0,2g()即就是[即可.f(x)f(x)在区间[a,b]上应用罗尔中值定理]x0,因此只需验证函数F(x)g(x)g(x)

6、设f(x)在[x1,x2]上可导,且0x1x2,试证:至少存在一点(x1,x2),使得x1f(x2)x2f(x1)f()f().x1x2f(x2)f(x1)f(x)()xx2x1x证:分析:要证结论即为: ,因此只需对函f()f()111()xx2x1x数f(x)1和在区间[x1,x2]上应用柯西中值定理即可.xx此题亦可改为:

设f(x)在[a,b]上连续,(a,b)内可导,若0ab,试证:至少存在一点(a,b),使得af(b)bf(a)[f()f()](ab).7、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)0,试证:(1)(a,b),使得f()f()0;(2)(a,b),使得f()f()0.证:(1)令F(x)xf(x),利用罗尔中值定理即证结论.(2)分析:f()f()0e[f()f()]0[e22x22f(x)]x0,因此令F(x)ex22f(x),利用罗尔中值定理即证结论.8、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)1,试证:,(a,b),使得e[f()f()]1.[exf(x)]xe[f()f()]证:分析:要证结论即为1,即就是1.xe(e)x令F(x)ef(x),令G(x)e,则F(x)和G(x)在[a,b]上满足拉格朗日中值定理的条件,由拉格朗日中值定理知: xxebf(b)eaf(a)ebea,即就是e[f()f()].(a,b),使得F()babaebeaebea,即就是e.(a,b),使得F()babae[f()f()]因此,有1,即就是e[f()f()]1.e9、设f(x)、g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)g(a),f(b)g(b),试证:(a,b),使得f()g().0.证:分析:要证结论即为[f(x)g(x)]x令F(x)f(x)g(x),(1)若f(x)、g(x)在(a,b)内的同一点处取得相同的最大值,不妨设都在c点处取得最大值,则F(a)F(c)F(b)0(acb),则F(x)分别在[a,c]、[c,b]上满足罗尔中值定理条件,故1(a,c),2(c,b)使得F(1)0,F(2)0.由题设又知,F(x)在[1,2]上满足洛尔定理条件,故存在(1,2),使得F()0,即就是f()g()].(2)若f(x)、g(x)在(a,b)内的不同的点处取得相同的最大值,不妨设f(x)在p点处、g(x)在q点处取得最大值,且pq,则F(p)f(p)g(p),F(q)f(q)g(q)0,由零点定理知,c(p,q)(0,1),使得F(c)0,由此得 F(a)F(c)F(b)0(acb),后面证明与(1)相同.10、设f(x)在[a,b]上连续,在(a,b)内可导,且f(x)0,若极限limxaf(2xa)存在,xa试证:(1)存在一点(a,b),使得

b2a2baf(x)dx22; f()22b(2)在(a,b)内存在异于的点,使得f()(ba)f(x)dx.;

aa证:(1)令F(x)xaf(t)dt,G(x)x2,则F(x)、G(x)在[a,b]上满足柯西中值定理

b2a2ba条件,故存在一点(a,b),使得

b2a2af(t)dtf(t)dta2成立,即就是f()bab222成立,即就是2f(x)dx(ba)f()成立.af(x)dxf()(2)由(1)知,2ba22因此要证f()(ba)f(x)dx(b2a2)f(),2bf(x)dx.,aa即要证f()(ba)221a(b2a2)f(,)即要证f()(a)f(,)由已知

xalimf(2xa)f(2xa)0,可得,lim从而得f(a)0,因此要证f()(a)f(),xaxa即要证f()(a)f()f(a),显然只需验证f(x)在[a,]上满足拉格朗日中值定理条件即可。

推荐专题: 高斯定理证明 微积分零点定理的证明题

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号