千文网小编为你整理了多篇相关的《全等三角形的判定的证明(优秀范文三篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《全等三角形的判定的证明(优秀范文三篇)》。
教学目标:
1、知识目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等。
2、能力目标:
(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;
(2) 通过观察几何图形,培养学生的识图能力。
3、情感目标:
(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:学会运用公理证明两个三角形全等。
教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、公理的发现
(1)画图:(投影显示)
教师点拨,学生边学边画图。
(2)实验
让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)
这里一定要让学生动手操作。
(3)公理
启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)
作用:是证明两个三角形全等的依据之一。
应用格式:
强调:
1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。
3、平面几何中常要证明角相等和线段相等,其证明常用方法:
证角相等DD对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。
证线段相等的方法DD中点定义;全等三角形的对应边相等;等式性质。
2、公理的应用
(1)讲解例1。学生分析完成,教师注重完成后的总结。
分析:(设问程序)
“SAS”的三个条件是什么?
已知条件给出了几个?
由图形可以得到几个条件?
解:(略)
(2)讲解例2
投影例2:
例2如图2,AE=CF,AD∥BC,AD=CB,
求证:
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书。教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论。(3)讲解例3(投影)
证明:(略)
学生分析思路,写出证明过程。
(投影展示学生的作业,教师点评)
(4)讲解例4(投影)
证明:(略)
学生口述过程。投影展示证明过程。
教师强调证明线段相等的几种常见方法。
(5)讲解例5(投影)
证明:(略)
学生思考、分析、讨论,教师巡视,适当参与讨论。
师生共同讨论后,让学生口述证明思路。
教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。
3、课堂小结:
(1)判定三角形全等的方法:SAS
(2)公理应用的书写格式
(3)证明线段、角相等常见的方法有哪些?
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a书面作业P56#6、7
b上交作业P57B组1
思考题:
板书设计:
探究活动
全等三角形练习题
◆夯实基础
一、耐心选一选,你会开心:(每题6分,共30分)
1.下列说法:①全 等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的 对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()
A.①②③④B.①③④C.①②④D.②③④
2.如果 是 中 边上一点,并且 ,则 是( )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形
3.一个正方形的侧面展开图有( ) 个全等的正方形.
A.2 个B.3个 C.4个D.6个
4.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有()
A.1个 B.2个 C.3个 D.4个
5.下列说法正确的是( )
A.若 ,且 的两条直角边分别是水平和竖直状态,那么 的两条直角边也一定分别是水平和竖直状态
B.如果 , ,那么
C.有一条公共边,而且公 共边在每个三角形中都是腰的两个等腰三角形一定全等
D.有一条相等的边,而且相等的边在每 个三角形中都是底边的两个等腰三角形全等
二、精心填一填,你会轻 松(每题6分,共30分)
6.如图所示,沿 直线 对折,△ABC与△ADC重合,则△ABC≌,AB的对应边是,BC的对应边是,∠BCA的对应角是.
第6题第7题
7.如图所示,△ACB≌△DEF,其中A与D,C与E是对应顶点,则CB的对应边是,∠ABC的对应角是.
8.如图,AB、DC相交于点O,△AOB≌△DOC,A、D为对应顶点,则这两个三角形中,相等的边是____________________,相等的角是____________________.
9.已知 , , ,则 , , 和 的度数分别为 , , .
10.请在下图中把正方形分成2个、4个、8个全等的图形:
三、细心做一做,你会成功(共40分)
11.找出下列图中的全等图形.
12.找出下列图形中的全等图形.
(1)(2) (3)(4)(5)(6)
(7)(8)(9)(10)(11) (12)
13.如图,AB=DC,AC=DB,求证AB∥CD.
◆综合创新
14.如图,点 在一条直线上,△ △ 你能得出哪些 结论?(请写出三个以上的结论)
[来源:学科网ZXXK]
15.把一张方格纸贴在纸板上.按图1所示画上正方 形,然后沿 图示的直线切成5小块.当你照图2的样子把这些拼成正方形的时候中间居然出现了一个洞!
我们发现,图1的正方形是由49个小正方形组成的.图2中拼成的正方形却只有48个小正方形.哪一个小正方形没有了?它到哪去了?
中考链接
16.如图, ,则 的度数为()
A. B.
C. D.
17.如图,若 ,且 ,则 .
18.右图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.
参考答案
夯实基础
1.A
2.D
3.C
4.A.
5.B
6.△ADC,AD,AC,∠DCA
7.EF,∠DFE
8.AB=DC、AO=DO、OB=OC,∠AOB=∠DOC、∠A=∠D、∠B=∠C.
9. ; , ,
10.分法可分别如下所示:
11.根据全等形的定义得全等形有天鹅、荷花.
12.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形
13.分析:要证AB∥CD,只需∠ABC=∠DCB,要证∠ABC=∠DCB,只需△ABC≌△DCB.
证明:∵在△ABC和△DCB中, ,
∴△ABC≌△DCB(SSS).
∴∠ABC=∠DCB.
∴AB∥CD.
综合创新
14.由△ △ 可得到
△ △ 等.
15.5小块图形中最大的两块对换了位置之后,被那条对角线切开的每个小正方形都变得高比 宽大一点点.这 意味着这个大正方形不再是严格的正方形.它的高增加了,从而使得面积增加,所增加的面积恰好等于那个方洞的面积.
中考链接
16.C
17.
18.2
例1、如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长.
分析:
(1)图中可分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.
(2)利用全等三角形的对应角相等性质及外角或邻补角的知识,求得∠EBG等于160°.
(3)利用全等三角形对应边相等的性质及等量减等量差相等的关系可得:
CE=CA-AE=BA-AD=6.
解:
∵△ABE≌△ACD,∠C= 20°,
∴∠ABE=∠C=20°,∴∠EBG=180°-∠ABE=160°.
∵△ABE≌△ACD,∴AC=AB,AE=AD,
∴CE=CA-AE=BA-AD=6.
推荐专题: 党员的自我评价 简历的自我评价 全等三角形的判定的证明