千文网小编为你整理了多篇相关的《三角形全等定理的证明》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《三角形全等定理的证明》。
全等三角形的判定定理
全等三角形的判定定理
一、
二、
全等三角形。 教学内容:探索三角形全等的判定(ASA,AAS),以及利用全等三角形证明。 学情分析:学生已经学习全等三角形的概念以及掌握了运用SSS与SAS来证明
教学目标: 三、
1、 知识与技能:理解“角边角”、“角角边”判定三角形全等的方法;
2、 过程与方法:经历探索“角边角”、“角角边“判定三角形全等的过程,能运用已学三角形判定方法解决实际问题;
3、 情感态度与价值观:培养良好的集合推理意识,发张数学思维,感悟全等三角形的应用价值。
四、 教学重、难点:
重点:掌握三角形全等的判定方法――“ASA”、“AAS”
难点:三角形全等判定“ASA”、“AAS”定理的应用。
五、
六、 教学用具:电脑课件,三角板,纸片 教学过程:
(一) 创设情境
老师不小心将一个三角形玻璃打碎为两块,想要去商店配一块跟原来一样的三角形玻璃,要带两块去呢还是带一块就行了呢?如果带一块的话,要带那一块呢?
(引导学生思考,第一块不只能画一个三角形,第二块根据两边延伸只能确定一个三角形,所以只需要带第二块)
问:那我们从第二块玻璃可以得到关于三角形的什么信息呢?
学生答:两个角和一条边。
(此时教师应该强调是边是两个角的夹边)
师;那老师是不是可以不带然和一块玻璃,通过测量这两个角和它们的夹边就可以呢?我们根据这些信息买来的新三角形玻璃和原来的是不是就完全一样呢?也就是说,能不能通过“角边角“来判定两个三角形是否全等呢?
(二) 探究新知:
1、师:你们能画出两个内角分别是60°和45°它们的.夹边长是4cm的三角形吗?画完之后剪下来跟同桌比较一下,看有什么样的特点。(同时用几何画板演示)
2、师:这样我们就得到了证明三角形全等的另外一个判定定理,即“有两个角及它们的夹边对应相等的两个三角形全等”,要注意的是这条边必须是两个角所夹的边,同时要注意这三个元素一定要是对应相等的。
3、给出两个全等三角形规范证明过程;
书写格式:
证明:
在△ABC和△DEF中 (指明范围)
因为 ∠A=∠D
AC=DF (列出条件)
∠C=全等三角形的判定定理∠F
所以 △ABC≌△DEF (ASA) (得出结论)
4、 练习巩固:
如图,已知△ABC≌△A'B'C',CF,C'F'分别是∠ACB和∠A'C'B'的角平分线,求证
:CF=C'F
5、 探究“角角边”是否也能证明两个三角形全等
6、练习
七、总结
今天我们学了哪几种三角形全等的判定方法呢?
我们要记住这两节课所学的判定三角形全等的方法,下节课我们也将会学习另一种判定方法,大家可以先回家研究一下还可以怎样证明。
推荐专题: 高斯定理证明 三角形全等定理的证明