首页 > 应用文书 > 证明 > 详情页

全等三角形的证明题(范文2篇)

2023-01-19 19:38:52

千文网小编为你整理了多篇相关的《全等三角形的证明题(范文2篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《全等三角形的证明题(范文2篇)》。

第一篇:全等三角形练习题

一、选择题

1.如图,给出下列四组条件:

① ;② ;

③ ;④ .

其中,能使 的条件共有( )

A.1组 B.2组 C.3组 D.4组

2.如图, 分别为 的 , 边的中点,将此三

角形沿 折叠,使点 落在 边上的点 处.若 ,

则 等于( )

A. B. C . D.

3.如图(四),点 是 上任意一点, ,还应补

充一个条件,才能推出 .从下列条件中补充

一个条件,不一定能推出 的是( )

A. B. C. D.

4.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两

个条件才能使△ABC≌△DEF,不能添加的一组条件是( )

(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF

(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF

5.如图,△ABC中,∠C = 90°,AC = BC,AD是∠BAC的平分线,

DE⊥AB于E,若AC = 10cm,则△DBE的周长等于( )

A.10cm B.8cm C.6cm D.9cm

6. 如图所示,表示三条相互交叉的公路,现要建一个货物中

转站,要求它到三条公路的距离相等,则可供选择的地址有( )

A.1处 B.2处 C.3处 D.4处

7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配

一块完全一样的玻璃,那么最省事的方法是( )

A.带①去 B.带②去 C.带③去 D.带①②③去

8.如图,在 中, , 是 的垂直平分线,交 于

点 ,交 于点 .已知 ,则 的度数为( )

A. B. C. D.

9.如图, , =30°,则 的度数为( )

A.20° B.30° C.35° D.40°

10.如图,AC=AD,BC=BD,则有( )

A.AB垂直平分CD B.CD垂直平分AB

C.AB与CD互相垂直平分 D.CD平分∠ACB

12.如图, ∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为( )

A. 5cm B. 3cm C. 2cm D. 不能确定

13.如图,OP平分 , , ,垂足分别为A,B.下列结论中不一定成立的是( )

A. B. 平分

C. D. 垂直平分

14.如图,已知 那么添加下列一个条件后,仍无法判定( )

A. B.

C. D.

15.观察下列图形,则第 个图形中三角形的`个数是( )

A. B. C. D.

二、填空题

1.如图,已知 , ,要使 ≌ ,可补充的条件是 (写出一个即可).

2.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,且AB=5cm,则△DEB的周长为 ________

3.如图, ,请你添加一个条件: ,使 (只添一个即可).

4.如图,在ΔABC中,∠C=90°∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB的距离是__________厘米。

5.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形

有 个 .

6.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________度.

7如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.

恒成立的结论有_______________________(把你认为正确的序号都填上)。

8.如图所示,AB = AD,∠1 = ∠2,添加一个适当的条件,使△ABC ≌ △ADE,则需要添加的条件是________.

三、解答题

1.如图,已知AB=AC,AD=AE,求证:BD=CE.

2.如图,在 中, ,分别以 为边作两个等腰直角三角形 和 ,使 .

(1)求 的度数;(2)求证: .

4.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.

5.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.

(1)求证:△ABC≌△DCB ;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.

9.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.

求证:BD=2CE.

10.如图, ,请你写出图中三对全等三角形,并选取其中一对加以证明.

11.(7分)已知:如图,DC∥AB,且DC=AE,E为AB的中点,

(1)求证:△AED≌△EBC.

(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):

12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

(1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

[答案]

一、 选择题

1-5 cbccb

6-10 acdba

11-14 bdcb

二、填空题

1.略;

2.5;

3.AC=BD;

4.6;

5.283;

6.120;

7.①②③⑤;

8.AC=AE;

三、证明题

第二篇:全等三角形练习题

全等三角形练习题

◆夯实基础

一、耐心选一选,你会开心:(每题6分,共30分)

1.下列说法:①全 等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的 对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()

A.①②③④B.①③④C.①②④D.②③④

2.如果 是 中 边上一点,并且 ,则 是( )

A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形

3.一个正方形的侧面展开图有( ) 个全等的正方形.

A.2 个B.3个 C.4个D.6个

4.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有()

A.1个 B.2个 C.3个 D.4个

5.下列说法正确的是( )

A.若 ,且 的两条直角边分别是水平和竖直状态,那么 的两条直角边也一定分别是水平和竖直状态

B.如果 , ,那么

C.有一条公共边,而且公 共边在每个三角形中都是腰的两个等腰三角形一定全等

D.有一条相等的边,而且相等的边在每 个三角形中都是底边的两个等腰三角形全等

二、精心填一填,你会轻 松(每题6分,共30分)

6.如图所示,沿 直线 对折,△ABC与△ADC重合,则△ABC≌,AB的对应边是,BC的对应边是,∠BCA的对应角是.

第6题第7题

7.如图所示,△ACB≌△DEF,其中A与D,C与E是对应顶点,则CB的对应边是,∠ABC的对应角是.

8.如图,AB、DC相交于点O,△AOB≌△DOC,A、D为对应顶点,则这两个三角形中,相等的边是____________________,相等的角是____________________.

9.已知 , , ,则 , , 和 的度数分别为 , , .

10.请在下图中把正方形分成2个、4个、8个全等的图形:

三、细心做一做,你会成功(共40分)

11.找出下列图中的全等图形.

12.找出下列图形中的全等图形.

(1)(2) (3)(4)(5)(6)

(7)(8)(9)(10)(11) (12)

13.如图,AB=DC,AC=DB,求证AB∥CD.

◆综合创新

14.如图,点 在一条直线上,△ △ 你能得出哪些 结论?(请写出三个以上的结论)

[来源:学科网ZXXK]

15.把一张方格纸贴在纸板上.按图1所示画上正方 形,然后沿 图示的直线切成5小块.当你照图2的样子把这些拼成正方形的时候中间居然出现了一个洞!

我们发现,图1的正方形是由49个小正方形组成的.图2中拼成的正方形却只有48个小正方形.哪一个小正方形没有了?它到哪去了?

中考链接

16.如图, ,则 的度数为()

A. B.

C. D.

17.如图,若 ,且 ,则 .

18.右图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.

参考答案

夯实基础

1.A

2.D

3.C

4.A.

5.B

6.△ADC,AD,AC,∠DCA

7.EF,∠DFE

8.AB=DC、AO=DO、OB=OC,∠AOB=∠DOC、∠A=∠D、∠B=∠C.

9. ; , ,

10.分法可分别如下所示:

11.根据全等形的定义得全等形有天鹅、荷花.

12.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形

13.分析:要证AB∥CD,只需∠ABC=∠DCB,要证∠ABC=∠DCB,只需△ABC≌△DCB.

证明:∵在△ABC和△DCB中, ,

∴△ABC≌△DCB(SSS).

∴∠ABC=∠DCB.

∴AB∥CD.

综合创新

14.由△ △ 可得到

△ △ 等.

15.5小块图形中最大的两块对换了位置之后,被那条对角线切开的每个小正方形都变得高比 宽大一点点.这 意味着这个大正方形不再是严格的正方形.它的高增加了,从而使得面积增加,所增加的面积恰好等于那个方洞的面积.

中考链接

16.C

17.

18.2

推荐专题: 全等三角形的证明题

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号