首页 > 更多文库 > 2号文库 > 详情页

导数在高中数学教学中的应用(合集)

2024-03-16 20:51:46

千文网小编为你整理了多篇相关的《导数在高中数学教学中的应用(合集)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《导数在高中数学教学中的应用(合集)》。

第一篇:高中数学教学反思

一、对数学概念的反思――学会数学的思考

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从“教”的角度去看数学,他不仅要能“做”,还应当能够教会别人去“做”,因此教师对教学概念的反思应当从逻辑的、历史的、关系的等方面去展开。

以函数为例:

1、从逻辑的角度看,函数概念包含定义域、值域、对应法则等,以及单调性、奇偶性、周期性、对称性等性质和一些具体的函数,这些内容是函数教学的基础,但不是全部。

2、从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系。

如方程的根可以作为函数的图象与x轴交点的横坐标;

不等式的解就是函数的图象在轴上方的那一部分所对应的横坐标的集合;

二、对学数学的反思

当学生走进数学课堂时,他们的头脑并不是一张白纸――对数学有着自己的认识和感受。教师不能把他们看成“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。

要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中老师尽量少讲,让学生多动手,动脑操作,尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。

三、对教数学的反思

教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的.意愿呢?

我们在上课、评卷、答疑解难时,我们自以为已经把题目讲得清楚明白了,一题多解,举一反三,发散思维都用到了,学生受到了一定的启发。但结果却不尽如人意,遇到同类型的题目学生仍然很茫然,无从下手。经过反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的把自己的想法强加给他们,想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。下次遇到同类型的题目只会机械地模仿,有时甚至生搬硬套,照葫芦画瓢,将简单问题复杂化。

第二篇:高中数学教学反思

今年是我走上教学岗位的第一年,这一年以来我一直是战战兢兢如履薄冰,生怕误人子弟。在这学期即将结束之时,在教授完高中数学必修3和必修4之后我有如下一些反思。

因为同我本人的学生时代相比较新的课程改革使课标从理念、内容到实施都有很大改变,作为一名数学教师应该充分认识数学课程改革的理念和目标。好在教学过程中不断地学习、调整、反思。

首先,应该把握好课程标准的要求,不自作主张改变课程标准的意图。例如私自增加课时,补充一些知识性的东西或增加教学的难度。这样做既不利于学生学习能力的提高,又束缚学生的思维还增加学生的负担。

其次,在教学过程中不能只注重定义、概念、结论的教学而忽略过程。如在对数运算性质的教学中,我更多地鼓励学生通过指数的运算性质的复习引导学生通过各种途径,如类比、计算、猜测等方法去发现对数的运算性质。而不是直接给出对数的运算的性质然后再不断地进行机械训练。这样就不至于今天练了明天忘。学生对自己推导得到的运算性质就不一样了,他们能更加理解运算规律,熟记运算性质,熟练运用性质。

再者,在教学中不能单一的强调知识的系统性和逻辑性,却忽视学生的认知水平,对一些问题的引入常常单刀直入,让学生没有直观的映象,理解起来不容易接受,在这方面可以从一般到特殊给学生以直观映象帮助理解。这样也符合认知的一般规律。也可以利用多媒体辅助教学,因为多媒体可以把很多立体几何部分的'图形直观形象地展示给学生,增加学生的感性认识。同时多媒体也可以有效的增加课堂的容量和减少我们的板书工作量。

最后,我觉得有很多的困惑和担心。在贯彻新课标的过成中,总会觉得学生的解题能力变得差了很多,但是学生的升学还是以成绩为依据的。不过这也提醒我们要时时刻刻真真诚诚的关心教育自己的学生,希望能为学生的长远发展铺好路。

第三篇:高中数学教学反思

作为一名高中数学教师来说不仅仅要上好每一堂课,还要对教材进行加工,对教学过程以及教学的结果进行反思。因为数学教育不仅仅仅关注学生的学习结果,更为关注结果是如何发生,发展的.我们能够从两方面来看:一是从教学目标来看,每节课都有一个最为重要的,关键的,处于核心地位的目标.高中数学不少教学资料适合于开展研究性学习;二是从学习的角度来看,教学组织形式是教学设计关注的一个重要问题.如果我们能充分挖掘支撑这一核心目标的背景知识,通过选取,利用这些背景知识组成指向本节课知识核心的,极富穿透力和启发性的学习材料,提炼出本节课的研究主题,这样就需要我们不断提高业务潜力和水平.以下就是我结合高中教师培训联系自己在平时教学时的一些状况对教学的一些反思.。

一、对数学概念的反思――学会数学的思考

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界.而对于教师来说,他还要从"教"的角度去看数学,他不仅仅要能"做",还应当能够教会别人去"做",因此教师对教学概念的反思应当从逻辑的,历史的,关系的等方面去展开.

以数列为例:从逻辑的角度看,数列的概念包含它的定义,表示方法,通向公式,分类,以及几个特殊的数列,结合之前学习过的函数来说,它在某种程度上说,数列也是一类函数,当然也具有函数的相关性质,但不是全部.从关系的角度来看,不仅仅数列的主要资料之间存在着种种实质性的联系,数列与其他中学数学资料也有着密切的'联系.数列也就是定义在自然数集合上的函数;。

二、对学数学的反思

对于在数学课堂每一位学生来说,他们的头脑并不是一张白纸――对数学有着自己的认识和感受。教师不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。就应怎样对学生进行教学,教师会说要因材施教.可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都就应掌握哪些知识,要求每一位学生完成同样难度的作业等等.每一位学生固有的素质,学习态度,学习潜力都不一样,对学习有余力的学生要帮忙他们向更高层次迈进.平时布置作业时,让优生做完书上的习题后,再加上两三道有难度的题目,让学生多多思考,提高思含量.对于学习有困难的学生,则要降低学习要求,努力到达基本要求.布置作业时,让学困生,尽量完成书上的习题,课后习题不在家做,对于书上个别个性难的题目能够不做练

总之,在上好一堂的同时,结合新课程的教学理念进行相应的教学反思能够不断提高业务潜力和水平,从而更好的服务于学生。

第四篇:高中数学教学反思

教数学十年,有些教学内容教了好几遍,但是每当重新教这些内容的时候,都有不同的收获:有备课时品出的新鲜味道,也有听课时尝到的独特滋味,更有教学时学生给的不一样的调味方式。套用《论语》里面的名句:“温故而知新,不亦乐乎!”

记得在学太极拳的时候,老师在教我们每招每式的时候,不仅讲这招的动作要领,还要讲解这招的作用,是用来进攻对方的那个方位,还是用来防御对方的某个招式。在某次备课时,我突然想到,教学生数学就象教他们打拳。每一个系统的章节就是一套严密的“武术套路”,我们不仅要让他们知道这个“套路”的来龙去脉(能帮助我们解决什么问题),还要教他们学会每一个招式(知识点),并告诉他们这些招式的作用及使用方式,对方出什么招,我们得对什么招(看到这道题,就得想到用什么方法来处理),还得带他们操练几遍(做练习)巩固所学技能,最后还得有实战演练(考试或实习作业);在实战中学生要面对各种各样的对手,他们要学会灵活应用这些“招式”来制服“对方”,从而不断增长见识,提高功力。当我把这些想法告诉学生和家长时,发现他们能接受这种观点,这样数学学起来挺快乐的。可我突然又想到了,给人一杯水,自己要有一桶水,想想自己,虽然有一桶水,但桶的容积还比较小。看来还要加强修炼,提高自己的“功力”,向“数林高手”的目标进发。

在一次听课中,我听到了“数学是一种语言”的'说法,开始觉得有些新奇,但仔细一想,却很有感触,不得不佩服这种说法的高明。语言是我们日常沟通的工具,促进我们互相理解,它应该通俗,易懂。数学是一种语言,说明她就在我们生活的周边(事实也是如此,我们细心观察,随时都可以发现数学的影子),说明她有通俗易懂的一面(不是所有的数学知识都那么高深莫测,我相信大部分数学知识都是容易让人理解的,只要你选对正确的表达方式),说明她是沟通的工具(我认为数学促进了人类与大自然客观世界的沟通,让我们进一步了解客观规律,并按客观规律办事)。把数学当成一种语言来教,就要求我们数学老师进一步了解数学的本质,并把本质的东西用通俗易懂的方式传授给学生,让学生容易接受;让学生不再惧怕数学,觉得数学不再的高深莫测难以接近;让学生觉得学数学有乐趣不乏味,愿意走近她研究她。其实,“把本质规律的东西用通俗易懂的方式展示出来”,谈何容易!这需要很深的功力,也是我追求的目标!

最近,在和学生一起探讨学习向量。向量是数学中一个很神奇的东西,没有运算,向量就是一个指示路标,但一旦我们给她赋予了运算之后,她展示了不可思议的力量。这在教学过程中我不断的体会到。在向学生展示运用向量解决各种原来认为挺复杂的题目而向量却简洁有效的解决了的时候,我常常会感叹:向量又“兵不血刃”解决了问题。向量是解决数学问题的一把利刃,其实数学也是一把解决各种自然、生活、社会问题的利刃。在开始介绍向量数量积的时候,我们课本的引例是物理中功的定义,功是一个标量(数量),而力和位移是矢量(向量),两个向量在一定的规则下变成一个数量,由此我们数学上定义了“数量积”这个概念,这是一个“神来之笔”,在接下来的学习中我们确实真真切切地感受到了这一笔的“神奇”。课堂上我就感慨了一句:数学就是一把宝刀,当物理需要解决某个问题的时候,我们就递上一把锋利的刀把它刷刷解决了。当下,有个学生(应该是个物理高手,呵呵)就说了,老师,数学应该是个“磨刀石”,物理解决问题时它已经有“刀”了,数学是把这把“刀”磨得更加的锋利、好用!一想,还真是!学生的比喻也很贴切,给了我不一样的看问题的方式。数学是人们在各个领域认识自然规律的有力武器,当人们在某个问题徘徊时,数学就会以自己独特的方式带他们突破瓶颈,进入更深层次的领域,这一点在科技高速发展的今天将会越来越明显。这又让我想到了,数学是“磨刀石”的话,那我们就要教学生怎么“磨刀”,就是怎么用数学的眼光来看待所遇到的问题――在各个自然学科中,我们会遇到各种各样的的问题,当我们把它们的主要信息抽象出来后,我们不妨用相应的数学模型结合本学科的知识进行研究,相信这样会有意向不到的效果。有句话我很赞赏(原话记不全了,但大体意思理解了):当你忘掉所有数学的知识点之后剩下的关于数学的东西,那才是真正的数学!这些数学的东西就是数学的思想方法,也是我们老师要交给学生最主要的东西!

我还听到了一些说法:数学是一种文化。(我认可)。数学是一种美。(我感受到了)。数学是一种哲学。(我觉得也是,但理解有限)……

写到这,我突然想到了:数学就是数学!她有各种各样的表象,不同的人有不同的理解,同一个人在不同的时期也有不同的体会。这正是数学既平凡又伟大的地方,也是她高深莫测的地方。联想到“佛”,我想没有人知道真正的“佛”是什么样的,不同的人心中的“佛”也不一样,同一个人在不同时期看到的“佛”也不一样。

此时,突然有一种很强烈的感觉在脑中回荡:敬畏数学!作为数学的一名传播者,越走近数学,我就对数学越加的敬畏!我对我的传播工作更加的谨慎,我要尽力把正确的有效的数学知识以恰当合理的方式传授给学生,让他们享受到数学给他们学习生活带来的乐趣。若学生听完我的数学课后,有如此的感觉,我无憾矣!

我的乱弹乱唱,只博一乐,不足挂齿。同行好友若有高见,欢迎“抛砖”!

第五篇:高中数学教学反思

我将从以下几个方面说一说自己在教学中体会:

一、把握细节

曾听过细节决定成败,虽说有夸大其词的说法,但从另一方面说明细节的重要性。在一堂课之中这细节可能是某个问题――如反函数的提出,也可能是某个问题的解释――复合函数的单调性,也许是某个内容的先后问题――如分段函数的奇偶性的提出,也学是对学生的态度等。一堂课之中,细节处理的好一点,缺憾就少一点。

二、把握重难点

再讲复合函数的单调性时,要强调特殊到一般的认识过程。呈现的方式不拘泥于一种形式,复合函数的单调性涉及到多次对应,可以以表格的形式体现,也可以以集合的图示体现,但要强调要在区间中取值。从中学生可较为容易的理解――同增异减这一结论。如果为了加强理解可举具体的实例,根据定义结合参与复合的两个函数的单调性给出证明。

三、注重知识的系统化、综合化

每堂课都有许多知识点。就新课而言,每个知识点都可以进行变式、坡式的训练。单一的重复的训练是机械而且是没有多大益处的。重复有必要,但要适可而止。要在重复中提高,这就需要在系统、综合方面加强训练,以启迪、发散思维。如数学中常讲的含参数的问题,最值中涉及到二次函数轴动或是区间动的问题。一般而言,动态的问题要比静态的问题有难度。所以要在这方面逐步的渗透。

四、注意如何设置问题

设置问题是一节课的重要环节。根据内容设置一系列有梯度的问题。设置问题要注意的几个原则:

①必要性;

②针对性;

③准确性;

④层次性;

⑤时效性;

⑥创新性;

⑦价值性;

⑧逻辑性。

如:如何把反函数给学生讲的通俗易懂。有一个角度:反解,原来的应变量变成了自变量,换言之坐标系发生了怎样的变化。可理解成沿某条直线翻转了一百八十度。

五、把握课堂环节

在课堂环节方面:要注意一堂课的设计流程,注意每个环节的衔接,每个环节的解释。出示例题、问题、习题首先要留给学生思考的时间。其次自己要准备的特别的充分,特别的熟练,要有预见性,自信、从容,那种兴奋、冲动的热情,释放出愉悦的能量。学生什么情况都有可能出现,也许某一位同学是这里不理解,也许这位同学是那里不理解。要照顾到大多数的同学,而不是听到了从个别几位同学嘴里发出的声音就去讲下一个问题。出示例题、问题、习题之后就要想着如何启发学生,如何给学生释疑。如:再讲函数零点的时候,有这样的题判断方程根的情况,所给的方程是比较有特点的。这时学生可以想到,有些方程可以用求根公式或是因式分解或是换元的方法来确定方程的根。另一种思想便是转化的思想,转化成判断函数零点的问题。当然就是利用函数的图像,在这里极少或是没有同学可以想到将等式的两边分别看成相应的函数,若有,这样问题就转化成了看函数图像是否有交点。

课堂中有释疑这一环节,释疑时需要注意贴切,达到一个题眼一点就破的高度。范老师在解释“精确度”时就显得非常的自然、贴切,似乎这就是我们心中蒙蔽的想法(学生心中或者已有一些朦胧的模糊的`纷乱的想法,只需要老师清晰的一理,他便会获得收获的兴奋、喜悦)。听了他的解释之后似乎有豁然开朗的感觉,而非是解释的越多,越像是在迷雾里打转。要在流程上,问题的设置、解释上,环节的衔接上用心下功夫。(听同事说三中推出新人的标准:干练、精准、严谨、激情)

六、注重教学方式、方法技巧的积淀

要想快速的汲取营养,最快的途径是向其他教师学习,取他人之长,最好的可以内化。他们有着老道的方式、方法及技巧。曾听办公室的同事说他如何解释反函数,听后即感清新。问他的问题,多有此感觉。有些问题值得潜下心来琢磨或是问一问同事是怎么处理的,不能拘泥于一处。

七、向同事学习

同事之中有许多经验丰富的教师,他们身上有许多可取之处,如他们的个性、独特、洒脱。细想一下他们的风格是如何形成的。在所处的学科组中有两位教学别具一格的教师。一位善于层层设问,精巧富有层次,丰富又系统,细致又不失大气。另一位则洒脱自如,点睛之语使人释然,不显章法,又有迹可循,综合中的变化,变化中的提升,一览众山小。这种层次性的设问,点睛之语值得学习。

推荐专题: 在工作中的自我评价 导数在高中数学教学中的应用

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号