千文网小编为你整理了多篇相关的《导数在高中数学教学中的应用(范文5篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《导数在高中数学教学中的应用(范文5篇)》。
摘要:数学期望作为一种科学的工具,能够将经济问题进行量化分析,促进工业企业进行科学决策。阐述了数学期望的概念,并提出了数学期望与工业企业经济决策的关系,分析了数学期望的应用步骤,最后提出数学期望在工业经济决策中的具体应用案例。
关键词:数学期望;工业企业;经济决策
引言
随着工业经济的发展,工业企业经济决策的科学性在企业发展过程中至关重要。工业经济的发展依赖于对自然资源的占有和有效配置,以何种批量进行工业生产、投资何种机器设备等问题是工业企业经常面临的经济决策问题。数学期望作为一种科学的工具,通过相关理论知识将经济问题量化为数学问题,能够大大提高工业经济决策的科学性与高效性。
1数学期望的概念
数学期望是指在实验中每种可能的结果与其相应的概率相乘的总和,是一种最基本的数学特征,反应了随机变量的平均取值状况。数学期望通过对每次实验中的随机变量进行相关计算,用统计学与概率论的思维来描述随机变量的相关特征。
2数学期望与工业企业经济决策的关系
2.1数学期望提高工业企业经济决策的效率
工业企业的发展与工业企业管理者是否做出科学的决策息息相关。当工业企业管理者处于复杂环境背景下,数学期望的相关理论能够帮助企业管理者将经济问题来量化分析,通过一系列的数学计算,得出不同环境下的不同结果,并以计算结果作为决策标准,从而快速、高效、科学地解决复杂多样的经济问题。计算器、计算机等设备的使用更是加快了经济问题的处理效率。可见,数学期望通过量化分析经济问题,在保障决策科学性与准确的同时,大大提高了工业企业在复杂环境背景下经济决策的效率。
2.2数学期望提高了工业企业经济决策的科学性
通过社会生活经验总结出的理论知识在实践中的应用,在一定程度上推动了人类对客观世界的认知和改造,数学正是一种通过分析事物间的客观规律来解决实践中具体问题的科学、高效、准确的工具。在经营管理活动中,工业企业管理者有时是用感性的思维来分析问题,进行经济决策时难免缺乏科学的理论指导,这使得不科学、不合理的执行结果在决策后时常发生,存在偏差或错误的决策结果严重影响了工业企业的正常经营。而数学期望的相关理论知识在工业企业经济决策中的应用,能够帮助管理者用科学、严谨的逻辑思维量化处理复杂的经济决策问题,从而使管理者能够做出科学的决策行为,大大提高工业企业经济决策的科学性。
3数学期望在工业企业经济决策中的应用步骤
一般而言,数学期望在工业企业进行经济决策时,可以按照以下步骤应用:
3.1确定经济决策的目标
确定经济决策的目标,是工业企业管理层运用数学期望进行经济决策的第一步。通过科学的筛选,以及综合考虑多方面因素,使企业管理层能够在特定条件与有效资源的约束下,做出可供选择的多种方案。
3.2计算影响因素的概率
在多种备选方案中,工业企业管理层应该全面、系统地分析对经济决策具有影响作用的各种可控因素与不可控因素,在综合分析各种影响因素的基础上,运用数学期望方法计算出各种因素的概率,从而为下一步骤的计算提供数据支持。
3.3计算企业预期收益值
在确定了不可控因素与可控因素等各类因素的发生概率后,工业企业管理者应依据统计学方法来计算企业收益值,并将该预期收益值与相应的概率对应。
3.4选择最优决策方案
首先,工业企业应以预期受益值与对应的概率为数据材料,根据数学期望的计算方法,计算出不同方案的数学期望,并以数学期望的大小作为决策标准,从而选在出最优的决策方案,提高工业企业的管理效率[1]。
4数学期望在工业企业经济决策中的应用案例
4.1数学期望在工业企业最佳生产批量决策中的应用
最佳生产批量是指企业在成批生产中,使与之相关的生产费用最低的生产批量。工业企业在生产过程中,往往会遇到分几批进行生产、每批生产产品多少个是最经济合理的决策问题。以最佳生产批量进行生产,能够帮助企业付出最小的生产成本或收取最大的经营利润。数学期望在工业企业经济决策中的应用,能够帮助企业有效解决最佳生产批量这样的决策经济问题,期望利润是常用的比较指标。例如:在进行明年生产量决策时,某工业企业通过分析以往的生产资料及市场销售情况,预测出市场销路差、中、好的概率分别为0.2、0.5、0.3,大、中、小的生产批量分别用A、B、C表示。通过市场经验,明年销路状况与生产批量的关系如下表1所示。通过分析,可以用数学期望法确定最佳生产批量,以预期利润P的大小作为决策标准中。由于PB>PC>PA,生产批量B是该工业企业的最佳生产批量。
4.2数学期望在工业企业投资决策中的应用
机器设备作为经营性长期资产,是工业企业发展的物质基础,机器设备更新换代是工业企业一项重要的投资决策。工业企业在发展过程中,往往会遇到对机器设备购置或维修等多种提高产能的投资决策方案。通过数学期望方法,管理者能够在综合各种可预见因素与不可预见因素的前提下,从各种方案中得到期望值最大的决策方案,为工业企业的发展做出最优投资决策[2]。例如:某工业企业需要一台大型机床,企业管理者通过对市场上的a、b两种机床进行调研,了解到两种机床在相同环境下的次品数分别为c、d,通过分析长期产能表现,可得到c、d两种机床的次品个数及概率为如表2、3所示。通过分析,可以运用数学期望来分别计算两类机床的次品率,将购置次品率E低的机床作为最优决策方案。
参考文献
[1]柳长青,黎勇.应用数学中的建模思想及其实践对策研究[J].成功,2013(20):16.
[2]丘作良.浅析数学期望与经济决策的关系及其运用[J].现代商业,2015(17):142-143.
【摘要】在经济社会飞速发展的今天,数学理论对经济的发展有着不可忽视的推动作用。作为新世纪的高中生,应当以“人人学有价值,人人都活得必须的数学”为理念,努力做到,学好数学,会应用数学,让数学成为生活的好帮手。本文以“高中数学理论在经济社会的应用”为题,提出几点浅薄的看法。
【关键词】高中数学;经济社会;应用策略
从九年义务教育开始,到高中,再到大学。“数学”都将陪伴学子每个学习生涯。在日常生活中不难发现,数学时时刻刻存在于身边。有的人说学那么多数学有什么用,纯理论,真正派上用场的能有几个,会简单的加减乘除就行了。笔者对于这种看法不以为然,这种言论显然没有领悟到数学的真正内涵。小到日常生活,大到国家命脉,都与数学有着千丝万缕的关系。高中数学作为衔接初级数学以及高等数学的一个节点,其重要地位不言而喻,下文是笔者就高中数学理论在经济中应用进行了简要阐述。
一、高中数学对经济发展的重要影响
数学对国民经济的发展起着至关重要的作用。马克思曾经说过:“一门科学只有成功的运用数学时,才算达到了完善的地步”,也有力肯定了数学的价值。笔者查阅相关资料,马克思早在100年前就在用微积分研究经济。无独有偶,二十世纪六十年代至新世纪初期,共有49名学者获得了诺贝尔经济学奖。笔者惊奇的发现,其中不难发现,其中16位学者获得了数学学位,其中,85%奖项成果应用了数学。即便,在周边生活当中,无论是商场消费、证券市场、市场营销还是银行贷款,数学无时无刻发挥着重要作用,以上种种迹象表明,数学与经济有着密切的联系。
二、高中数学在经济中的应用举例
笔者虽然没有深入了解“经济学”,但通过日常生活的观察以及与长辈之间的交流,也能了解促进经济发展的关键在于“获得收益”。商家为了获得更大的收益,在生产中会将产量、用料、成本考虑在内,常用到的“利润最高”“成本最低”“用时最少”等等,跟高中数学函数的最大值、最小值问题类似。现如今,银行为了实现资金流通,发行了各种理财产品。笔者周围有不少长辈在理财产品上投资,投资在笔者看来就是一场博弈,在这场博弈中必不可少的就是要运用自己所学的数学知识来选择更加有利的投资方式,降低投资风险,以获得最大的收益。比如,现在面前有三种理财项目,分别为a、b、c,现将一笔资金分别投入这三项中,各项目与国际经济走势有关系,且各项之间有不同的收益,按经济走势可分为良好、一般、较差。现提供银行理财产品详细计算数据:a、b、c三种理财产品的期望值分别为20.4万元、22万元、20万元;a、b、c三种理财产品的方差分别为96.2、49.44以及11.24。通过上述数据的提供,我们可得出结论:a项理财产品的平均收益是三者中最大的,而b项理财产品位居末端,平均收益为最小。在理财投资这场博弈中是风险和收益并存的,通过计算各项理财产品的方差可得知,方差越小,收益波动越稳定,反之,方差越大,风险越大,收益也越不稳定。在计算中我们可以看出,a项中的方差最大,投资风险就最大,平均收益也是最大;b项投资中风险较a项弱些;同比来讲,最后的c项成为三者中投资风险最小的一项。所以,笔者得出认知,就是在投资理财上时,要善于借助数学知识来降低投资的风险,切勿盲目的去投资,项目的收益和风险是并存的,只有从整体掌控局面,理智的选择投资理财产品,选择风险较小的同时收益较大的产品才是最佳的理财投资方式。由此可知,选择c项理财投资产品才是最理想的选择,同时可以预见,学好高中数学知识对以后的理财投资有着不容忽视的作用。
三、高中数学在经济运用中存在的短板
数学是一门与社会生活和经济生活密切相关的一门学科,具有很强的实践性。首先,在高中数学教学中,教师为让学生应对高考,加强了学生解题技能的培养,注重理论知识的传授,但却逐步忽视了数学的实践性,以致于让学生无法将数学知识融合进生活、经济及社会其它方面中,导致了学生学习知识的片面化、固定化、乏味化,致使学生对学习数学提不起兴趣来,并且禁锢了学生思维能力和独立思考能力的发展,不利于学生今后适应经济的发展。学生缺乏实践能力和思维创新能力,以致于学生不适应今后千变万化的市场经济形势,所学的数学知识不能够及时解决发现的问题,便会弱化高中数学在经济活动中运用的能力。其次,数学知识的有效运用需要结合时代的发展变化,如当时的政治制度、法律法规、道德规范、文化需要等,才能更好的发挥其作用。所以,在经济研究中,要据实使用数学,切勿将数据作为评判一切的标准,这样反而会限制自己的眼界,不利于解决实际的经济问题。总之,数学关乎国家命脉,作为新世纪的高中生,更应当认清自己身上的使命,你努力学好数学,善于应用数学,以数学之能探寻经济新方向,为社会做出些许贡献,实现自己的价值。
参考文献
[1]高中新课程与财经院校数学教学衔接的实践探索――以“概率统计”为例[J].赵慧,项昭.凯里学院学报.2013(03)
[2]浅谈经济管理类数学课程与高中数学课程的衔接[J].冯丽萍.井冈山医专学报.2008(06)
摘要:目前,数学已经成为生活中重要组成部分,其与经济之间的联系也越发紧密。现实生活中很多的经济问题都需要运用到数学知识来解决。文章对数字在经济学中的重要作用进行了总结,对其具体应用进行了分析,让我们对数学知识有着更深层次的认识。
关键词:数学;经济学;作用,应用
一、数学在经济学中的重要作用
在理论上,数学有科学皇冠的美誉。一方面,数学推动了经济学的发展,古典经济到现代经济学的转变,“边际革命”到凯恩斯主义的转变,都应用到了一定的数学知识。总的来说,在经济学中,数学有着如下的应用特征:
1)作为一种简单的表达媒介。简明扼要一向是数学最为明显的特征,而且这个特征具有唯一性。若要采用文字的表达方式,因为学者之间使用语言不同,读者在理解的过程中会产生较大的差异,这些都可能导致研究成果被人们所误解。但是,采用数学表达方式,可以使思想表达更为简明和深刻。
2)作为证明经济学理论的辅助工具。建立一个经济理论体系,在其提出后需要不断对其进行论证,以发挥这个理论的价值。一般来说,数学的推理性、逻辑性相对较强,在使用数学知识推导经济学理论的过程中,如果数学不能证明这个理论,则说明这个理论存在一定的缺陷。因此,需要重新对这个理论进行思考,找出其中的问题。仅靠数学文字来证明理论,需要花费大量的功夫,并且说服力不强。如果利用数学方法,经过数学论证的理论,更能被人们理解。举一个简单的例子:凯恩斯的《就业、利息、货币通论》,通过凯恩斯学派的发展成为IS-LM模型,这样得到的结果更为客观、直接。
3)提供量化的工具。在过去对经济的研究过程中,运用思辨式的议论方法来解决问题,这样得出的结果不可能100%接近实际。这个过程中有着很多不稳定的因素,得出的结论不容易被大众所接受。利用量化的思路能够把一些看似没有联系的因素整合起来,并且对经济活动中的多个变量进行考察,进而在具体的经济现象中总结出一般的经济规律。比如,在处理微观经济学关于边际、均衡的问题时,利用衡量就可得出直接的数据,这具有重大的现实意义。除此之外,数学在衍生工具定价、金融产品问题上能够发挥作用,就是依靠量化工具实现的。
二、数学在我国经济发展中的应用
1、应用于经济预测管理与决策优化
不管是在经济方面,还是管理上,预测都是十分重要的一项工作,它可以为人员组织,商品产销等的决策提供重要的借鉴。在经济的发展过程中,对资源进行优化组合是十分重要的,这就需要选择合适的发展目标,作出正确的管理决策。在多个发展战略中,选择最接近实际的策略,进而获取最大的收益。如此一来,必须使数学的目标函数达到最大值,目标函数也可代表损失,所以也要求它达到最小。在遇到这种问题时,通常都是把问题转化为求目标函数的条件极值。
2、应用于设计与制造和大型工程
在制造业的应用上,数学有了新的发展。通常计算机技术和数学设计技术之间有着一定的联系,所以一般数学设计技术所得出的成果适用于汽车、船体、机械模具、服装、首饰等方面。利用数学中的计算原理,对每项工程的设计进行严格的计算,从而使得到的结果更加准确,特别是大型的工程更加应该注意数学原理的运用。在我国,部分数学家为满足国家重点工程建设的需要,设计了一批工程计算专用的程序,在工程建设中发挥了重要作用。就拿三峡水利工程来说,这是社会所关注的一个大工程,在这个项目的建设中,面对的难题是大体积混凝土在凝结过程中化学反应产生的热,导致大坝受力不均匀,进而产生裂缝。以前的老办法是花费大量的时间和金钱事后修补,但是现在数学工作者们已经研发出了动态模型,对混凝土施工过程中温度、应力等进行计算。通过这个模型,工程建设者可以根据计算结果,选择出最为合适的施工方案。
3、应用于资源开发与环境保护
运用数学的计算原理,还可以分析人工地震的资料,进而更好地了解地质的结构。这样不仅可以准确地探寻到石油、天然气的具体位置,还给新的地区经济发展创造了条件。通过时间序列分析、数理统计等方式,目前成功研发出的成果有地震数据处理系统等。最近几年,波动方程解的偏移叠加、逆散射等方法也被应用到地震数据处理中来。同时,数学工作者们还通过建立地下水资源评价的方法和理论,在农田灌溉上下功夫,取得了一定的实际效益。
4、应用于信息处理和质量控制
当下电子商务是经济发展中的一个重要途径,它在进行信息传递的过程中有运用到数学。这体现在传统的编译码和滤波上。随着移动通讯系统、国际互联网系统等的发展,其中出现的`数学问题越来越明显。现在我国已经取得的成果有:利用数学知识,推动了计算机指纹自动识别、新一代图像数据压缩技术等的发展,也发展了计算机视觉,创造了从单幅图像定量恢复三维形态的代数方法、应用模式识别和信息论,在时间序列和信号分析的发展中取得新的进展。计算机使用代数进行编码,能够自动具备误差检测能力,提高运行的准确性。由于产品质量是经济发展中的重要问题,依据工业系统性能的精准性要求,在工作中运用到如质量控制等新的数学方法,工作方法有了明显的改善。
5、应用于农业经济
在讨论完人类开发关系和我国以往的生态农业思想等问题后,数学工作者又继续开展下一步工作,建立了与生态农业经济发展及整治方面有关的模型。具体的内容有:普通的水环境整治和水电能源扩建所需要的投入和产出,土地资源的开发和利用等等。另外,相关的工作者们利用生物、化学以及经济发展的成果,对农业资源的配置作出了新的规划,并且创建了一个数学模型。在这个过程中,数学工作者使用对策论参数规划、线性规划等工具,对许多地区的种植业和畜牧业进行规划,进而寻找出最为合理的布局方案。
三、总结
在今后的经济学理论发展过程中,数学起到的作用将会越来越重要,将会涉及到经济学的更多领域,换句话说,经济学不仅应用了数学而且还将会不断的应用着数学中的最新成果,促进社会的经济和发展。
参考文献:
[1]陈希茜.数学在经济学中的应用[J].中国水运(下半月).2009(09).
[2]张素芬,王琳.浅谈数学在经济学中的应用[J].商场现代化.2008(12).
[3]李胜玉.数学在经济学中的应用[J].现代商业.2008(18).
以前上课时,我经常只顾自己的想法,觉得讲的题目越多越好,很少顾及学生的思维与感受。慢慢地,发现学生上课听得懂,自己做却不会,可怕的是,到后来连学数学的信心也没有了。我一直很困惑……
自从20xx年后,有个学习理论强烈震撼了我,那就是建构主义学习理论――知识不是通过教师传授获得的,是学习者在一定的情景即社会文化背景下,借助于其他人(包括教师和学习伙伴)的帮助,利用必要的学习资源,通过意义建构的方式获得的。后来意识到,我们现正在倡导的许多新课程理念就是来之于这个理论背景,也使我的困惑茅塞顿开。.所以,我们必须转变教育观念,以学生为本,以学生的发展作为教学改革的出发点,走出一条优质高效、可持续发展的新路。
基于对以上问题的分析和认识,经过实践,我得到以下几点教学感悟:
1、关注学生的“预习”,淡化课堂笔记。
对于有些浅显易懂的课应该让学生提前预习,给学生一个自主学习的机会;对于有些概念性强、思维能力要求比较高的课则不要求学生进行预习。为什么呢?对于大多数学生而言,他们的预习就是把课本看一遍,他们似乎掌握了这节课的知识。但是,他们失去了课堂上钻研问题的热情;他们失去了思考问题时所用到的数学思想方法;更为可惜的是,由于他们没有充分参与解决问题的过程,失去了直面困难、迎难而上的磨练!
至于淡化课堂笔记,是源于一种现象――我发现笔记记得好的学生,他们的成绩不一定好。为什么会出现这样的情况呢?因为只知道记笔记的学生,当老师让他们思考下一道题的时候,他们往往还在做前面一道题的记录。……这样的学习,怎能谈得上思维的发展呢?
2、新理念下的教学应该怎样?
新课程标准指出,学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流等学习数学的方式,同时注重学生情感、态度和价值观的培养。这就要求我们教师放下权威,变以前的“教师中心”为“学生中心”,充分体现学生的主体性和能动性,教学目标的设置也改变一贯的用词:“使学生……”,体现三级目标:知识与技能――过程与方法――情感、态度与价值观。教师的心中应时时、处处装着学生,从学生的角度去设计问题,选择例题,成为学生的合作者、促进者、指导者,创造良好的课堂氛围和人文精神,培育学生学习数学的积极的情感与态度,形成正确、健康的价值观与世界观。因此在教学中,我经常坚持这样一种做法:上课时老师尽量少讲,主要是给学生腾出大量的时间与空间,让学生更主动、更积极、更亲历其境地去学。正是由于有了学生的深层次的参与,才能取得过去我们以老师的教为主所不可能达到的高效。为什么?这还可以从教学的本质是什么谈起。
教学的本质是什么?教学过程中师生的角色如何?我们的老师现在都会这样说:教学是一种特殊的认知活动。在课堂教学中,教师是主导,学生是主体,等等。但问题是我们的教师是否真的读懂了这个“导”字?我们的学生是否真的成为了学习的主体?
3、反思教学势在必行
教学中能否取得以上满意的效果,关键在于教师观念、教学方式的改变。从我的亲身感受来说,这是一个相当痛苦,又不是一蹴而就的事情。需要教师本人有极大的责任心、耐心与勇气,跟自己习以为常的教学方式、教学行为挑战,不断加强理论学习与培训,更重要的是加强反思性教学,即教师以自己的教学活动为思考对象,对自己在教学中所做出的行为以及由此所产生的结果进行审视和分析的过程。它是教师专业发展和自我成长的核心因素;教学经验理论化的过程;促进教学观念(特别是自身存在的内隐理论)改变的`强有力的途径。
4、学生也要反思
如果说老师去反思是为了更好的教,那么学生去反思是为了更好的学,并且还是我们整个教学过程的重中之重。那么,高中学生到底怎样进行反思?教学中我始终带着这个问题,思索自己的每一节课的教学设计,学生的学习方法、习惯如何养成?怎样进行反思?才能取得理想的学习效果。从前人、专家哪里吸取精华,特别是有关教学反思与教师反思给了我许多零星的想法,不断的思考,不断的实验,不断的否定与修改,逐步形成了高中生如何进行反思的一套做法。
4.1反思什么?
学生在数学学习过程中到底要反思什么?我认为大体上可分为:首先应该要求学生对自己的思考过程进行反思,其中包括得失与效率;其次要求学生对活动所涉及的知识及形成过程进行反思,对所涉及的数学思想方法进行反思;再次要求学生对活动中有联系的问题、题意的理解过程、解题思路、推理运算过程程以及语言的表述进行反思;最后还要求学生对数学活动的结果进行反思。特别做完题后要及时反思,即把自己的解题过程作为自己研究思考的对象,并从中得出某个结论。
4.2怎样反思?
有些学生,一上完课,就忙于做数学作业,对于上课内容没有整体把握或没真正理解透,做起题来只会模仿,照搬照抄,不是漏洞百出,就是解题思路受阻,方法欠优等。极易挫伤学生的解题信心及学习效率。因而,学生应作解题前的反思。还可对学习态度、情绪、意志的反思,如自己的身体、精神状态怎样?失败了能坚持吗?碰到难、繁题能静下心吗?自己有能力、信心解决它吗?以前见过它吗?或者是否有类似问题?哪些知识、技能还需回顾、请教等;其次要不断地自我监控。最重要的是解题后的反思。主要包括检验解题结果,回顾解题过程、解题思路、解题方法,还需对涉及的思想方法、有联系的问题进行反思等。
4.3反思习惯的养成
要提高学生的反思效果,除了以上这些,还必须讲究科学的方式,提高反思能力。要求学生写反思性日记就是一种不错的形式:
首先,每节课后要求学生写反思性学习日记,使学生超越认知层面,对本节数学知识的再认知,促使学生形成反思习惯,检查自我认知结构,补救薄弱环节。由于时间问题,不可能把上课的精华全都及时记下或理解,通过笔记可以弥补,做好善后工作。做好错题分析、订正工作,完善认知结构,提高学生的数学反思能力。
其次,写反思日记是一回事,怎样达到更好的效果又是一回事。老师当初应该做好学生的思想工作,认识到写反思日记的重要性,注重随时翻阅,最好每天抽5―10分钟浏览一下。一个阶段后,老师应做好督查工作,当作一份作业,了解学生存在的学习情况,进行个别指导,同时对学生的反思工作起到监督的作用,直到养成自觉的习惯。
总之,作为一线教师只有积极投入新课程的改革,不断探索、尝试新理念的内涵,才能更好的挑战的新教材的实施。
[摘要]社会生活中许多方面都会应用到数学。探讨师范院校学生如何处理好数学基础课和会计、经济学等专业课之间的关系,能提高数学与专业课相结合的意识。学生应当主动培养自己学习数学和经济学的兴趣,成为综合素质全面、适应教育发展需要的人才。
[关键词]数学;会计;经济学;教育
兴趣是最好的老师。师范院校学生应当正确处理好数学基础课和会计学、经济学等专业课的联系。对于实际中的经济问题,我们可以将经济学与数学知识相结合,运用数学方式解决问题。
1数学与专业课相结合的重要性
马克思曾说“一种科学只有在成功运用了数学时,才算其真正达到完善的地步。”数学学习是专业学科中物理学、会计学、金融管理学等都需要的。它是专业课程学习的工具和理论基础。对培养学生思考问题的思维逻辑能力,解决实际问题的应用能力,创新意识等都具有非常积极的作用。我们学习数学的思维方法以及意义在于:将学到的数学思想方法运用到实际生活中,解决相关专业中的实际问题,学以致用将数学与相关专业学科结合,培养高素质师范人才。
2数学在会计学中的应用
数学学习尤其要注意精确性和逻辑性。而这两个特点同样适用于会计学。对会计量化分析时,要精准处理好会计学各要素间及其内部之间的数量关系。对会计学中的一些概念,运用数学能够精确定义。数学学习培养学生的逻辑性,应用于会计学能为数据分析的结论确定奠定基础。
2.1数学思维应用在会计学
会计学中需要运用数学逻辑思维解决会计学问题。如,高中数学流程图在帮助区分会计学的错账更正法时有三种适用情况。错账更正法包括划线更正法、红字更正法和补充登记法。学生分不清适用情况,更正就更加困难。数学流程图也称作输入-输出图。用符号和文字形象直观说明,让学生准确了解事情是如何进行的。再如,对于会计某等式,我们可以使用数学等式基本性质以及数学归纳法证明此命题。理解、掌握数学课程讲的原理,对定理法则有严格证明。这样,既可以保持数学的逻辑性、系统性和科学性,又可以培养学生的思维逻辑能力。
2.2数学精确性应用在会计学
会计学中的研究财务管理活动和成本隶属经济管理科学。会计学的计量和核算要使用数学方法来处理,用精确数学方式表达会计学的复杂经济活动。会计学的理论、定量分析会计的相关信息时都要用到数学。会计反映财务状况的要素是资产、负债、所有者权益,这其中少不了用数学来解析。举例,会计学在讲企业经济业务发生时,可总结为四大类型、九种情况。在会计学中,有一个重要等式,我们称为会计等式或会计的恒等式,会计要素之间数量关系的平衡公式,是借贷记账法这个规则的基础,也是会计报表基础,资产负债表反映企业最重要的报表,其他报表可看做这张报表的某项细化。这一基本平衡关系用公式表示:资产=权益,资产=负债(债权人权益)+所有者权益,各有二个、三个会计要素。经济业务对会计影响有借、贷两种,借方资产、权益两个元素可选,贷方两个元素可以选。依据会计学借贷记账法有借必有贷,借贷必相等,计算第一个等式共有2*2四类型。同理第二个等式借、贷各三个元素可选,所以有3*3共九种情况,计算会计学结果时必须同数学结论一致。
3数学在经济学中的应用
在经济学有相当多的理论和数学知识联系密切,数学在经济分析中发挥重要的作用,可以运用所学数学来分析及处理类似的经济问题。举例:简单经济函数-成本函数、经济学边际问题。
3.1简单经济函数――成本函数、收入函数、利润函数
3.1.1概念成本函数表明总成本和产量之间的关系。总成本包括固定成本和可变成本。固定成本:短期内不随产量变动,包括设备维修厂房折旧、企业管理人员工资费用等。可变成本:随产量变动,包括原材料费、燃料和动力、生产工人的工资费用等。3.1.2举例说明人们在生产经营活动时,总是希望能够降低产品的生产成本,增加收入及利润。销售总成本TC、可变成本VC、固定成本FC、总收入TR、利润L这些经济变量都与产品的产量销售量x密切相关。那么,经过抽象及简化后,我们可以把他们都看作x函数,分别称为总成本函数记做TC(x)、可变成本函数记做VC(x)、固定成本函数记做FC;收入函数记做TR(x);利润函数记做L(x)。所以,成本函数TC(x)为x的单调增加函数。最简单的成本函数是线性函数。总成本TC(x)=FC+VC(x)=FC+b*x其中,FC,b是正常数,FC是固定成本;如果单位产品售价p,销售量是x,则收入函数是TR(x)=p*x;利润等于收入减去成本。所以,利润函数L(x)=TR(x)-TC(x)。举例:假设某厂每天生产x件产品的成本C(x)=2x+200单位为元,每天至少能卖100件产品,为不亏本,单位至少应该定多少元?分析:为不亏本,每天产品收入=成本。100p=2*100+200p=4(元)。不亏本,价格至少应定价为4元。
3.2数学导数在经济学中的边际成本、边际收入的分析
3.2.1生活中的实例如,天热,一个人很渴,想吃冰糕,第一个冰糕对他来说效益是最大的,因为刚开始他最渴;第二个冰糕的效益和第一个冰糕会减少,因为已吃了一个冰糕,也就不那么渴了……每支冰糕增加产生的效益,可以理解为边际效益。下面,引入经济学中的边际概念来说明。3.2.2经济学中的边际边际是经济分析常用的概念,经济学中指的是自变量x增加一个单位时引起因变量增加的量。边际分析法运用数学导数对经济变量边际变化研究的方法。3.2.3数学导数概念求函数y=f(x)在点xo处的导数,记作f′(xo)或y′|x=xo。求函数的增量,Δy=f(xo+Δx)-f(xo)。求函数f(x)在xo到xo+Δx之间的平均变化率,Δy/Δx=(f(xo+Δx)-f(xo))/Δx。取极限,得导数f′(xo)=Δy/Δx取极限当Δx→0时。3.2.4数学导数和经济学结合问题经济学中求边际问题转化成数学上求导数的问题。应用微积分分析解决问题。3.2.4.1边际成本当增加一个单位产量的时候,总成本的增加额。意味产量的微小变化所形成的成本函数的精确变化率。某个产品产量为x单位时所需的总成本C称C(x)成本函数。当产量由x变为x+Δx时,成本函数的改变量ΔC=C(x+Δx)-C(x)。成本函数的平均变化率ΔC/Δx=C(x+Δx)-C(x)/Δx。产量由x变到x+Δx时的边际成本即C(x)的导数=ΔC/Δx取极限=C(x+Δx)-C(x)/Δx取极限,Δx趋于0。经济意义:产量为x的边际成本是成本函数关于产量的导数。C(x)求导约等于产量为x时再生产一个单位产品所需增加的成本。因为ΔC约等于C(x)的导数,C(x)的导数记为R′(x)。举例:某个企业在短期内,当产量为4个单位时,总成本为2000元,当产量增长到5个单位时候,平均总成本为500元,那么该企业此时的边际成本是?分析:边际成本是增加一个单位时总成本的增加量。边际成本=500*5-2000=500元3.2.4.2边际收入当产品数量从x增加到x+Δx,收入增量:ΔR=R(Δx+x)-R(x),在x和x+Δx之间收入的平均变化率是两者间比值。当Δx→0时,R(x)可导,则此极限叫边际收入,数学叫收入函数导数,记为R′(x)。
4结语
会计、经济学等都需要跟数字打交道,自然与数学紧密相关。提高学生的数学学习兴趣,学好数学,利用数学解决生活实际问题和专业相关问题,是能否学好会计学、经济学的关键。
推荐专题: 在工作中的自我评价 导数在高中数学教学中的应用