千文网小编为你整理了多篇相关的《证明下列极限不存在》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《证明下列极限不存在》。
令y=x, lim(x,y)趋于(0,0)xy/x+y
=lim(x趋于0)x^2/(2x)=0
令y=x^2-x,lim(x,y)趋于(0,0)xy/x+y
= lim(x趋于0) x^3-x^2/ x^2 =-1
两种情况极限值不同,故原极限不存在
2答案: 首先需要二项式定理:
(a+b)^n=∑ C(i=0 C i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
a+b
故此,n=1时,式一成立。
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 C i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 C i=n1)n1 i a^(n1-i) * b^i]*(a+b)
= (a+b)^(n1+1)= ∑ C(i=0 C i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
推荐专题: 证明下列极限不存在