首页 > 应用文书 > 证明 > 详情页

2018考研高等数学基本定理函数与极限部分

2022-07-20 10:43:52

千文网小编为你整理了多篇相关的《2018考研高等数学基本定理函数与极限部分》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《2018考研高等数学基本定理函数与极限部分》。

第一篇:考研大纲第一章函数与极限

2013年试卷内容结构: 高等教学 约56% 线性代数 约22% 概率论与数理统计22%

试卷题型结构: 单选题8小题每题4分共32分;填空题6小题每题4分共24分; 解答题包括证明题9小题共94分高等数学

一、 函数、极限、连续

考试内容

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则单调有界准则和夹逼准则 两个重要极限函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。

考试要求

1理解函数的概念掌握函数的表示法会建立应用问题的函数关系.

2了解函数的有界性、单调性、周期性和奇偶性

3理解复合函数及分段函数的概念了解反函数及隐函数的概念

4掌握基本初等函数的性质及其图形了解初等函数的概念.

5理解极限的概念理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系

6掌握极限的性质及四则运算法则.

7掌握极限存在的两个准则并会利用它们求极限掌握利用两个重要极限求极限的方法

8理解无穷小量、无穷大量的概念掌握无穷小量的比较方法会用等价无穷小量求极限

9理解函数连续性的概念含左连续与右连续会判别函数间断点的类型

10了解连续函数的性质和初等函数的连续性理解闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理并会应用这些性质函数、极限、连续

第二篇:高等数学第一章函数与极限教案大全

高等数学教案

课程的性质与任务

高等数学是计算机科学与技术;信息管理与信息系统两个专业的一门重要的基础理论课,通过本课程的学习,也是该专业的核心课程。要使学生获得“向量代数”与“空间解析几何”,“微积分”,“常微分方程与无穷级数”等方面的基本概论、基本理论与基本运算;同时要通过各个教学环节逐步培训学生的抽象概括能力、逻辑推理能力、空间想象能力和自学能力。在传授知识的同时,要着眼于提高学生的数学素质,培养学生用数学的方法去解决实际问题的意识、兴趣和能力。

第一章:函数与极限

教学目的与要求

18学时

1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2.解函数的奇偶性、单调性、周期性和有界性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形。

5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

第一节:映射与函数

一、集合

1、 集合概念

具有某种特定性质的事物的总体叫做集合。组成这个集合的事物称为该集合的元素 表示方法:用A,B,C,D表示集合;用a,b,c,d表示集合中的元素

1)A{a1,a2,a3,} 2)A{xx的性质P}

元素与集合的关系:aA

aA

一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。 常见的数集:N,Z,Q,R,N+

元素与集合的关系:

A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B的子集,记作AB。

如果集合A与集合B互为子集,则称A与B相等,记作AB 若作AB且AB则称A是B的真子集。 空集: A

2、 集合的运算

并集AB :AB{x|xA或xB} 交集AB :AB{x|xA且xB}

差集

AB:AB{x|xA且xB

全集I 、E

补集AC:

集合的并、交、余运算满足下列法则: 交换律、ABBA

ABBA 结合律、(AB)CA(BC)

(AB)CA(BC) 分配律

(AB)C(AC)(BC)

(AB)C(AC)(BC)

对偶律

(AB)AB

(AB)AB 笛卡儿积A×B{(x,y)|xA且yB}

3、 区间和邻域

开区间

(a,b) 闭区间

a,b 半开半闭区间

a,b有限、无限区间 cccccca,b

邻域:U(a)

U(a,){xaxa}

a 邻域的中心

邻域的半径

去心邻域

U(a,)

左、右邻域

二、映射 1. 映射概念

定义

设X,Y是两个非空集合,如果存在一个法则f,使得对X中的每一个元素x,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射,记作

f:XY

其中y 称为元素x的像,并记作f(x),即

yf(x)

注意:1)集合X;集合Y;对应法则f

2)每个X有唯一的像;每个Y的原像不唯一

3) 单射、满射、双射

2、 映射、复合映射

三、函数

1、 函数的概念:

定义:设数集DR,则称映射f:DR为定义在D上的函数

记为

yf(x)xD

自变量、因变量、定义域、值域、函数值

用f、g、

函数相等:定义域、对应法则相等

自然定义函数;单值函数;多值函数、单值分枝.

例:1) y=2

2) y=x

3) 符号函数

1y01x0x0x04) 取整函数 yx

(阶梯曲线)

2x0x1x15) 分段函数 y

2、 函数的几种特性

1x1) 函数的有界性 (上界、下界;有界、无界) 有界的充要条件:既有上界又有下界。 注:不同函数、不同定义域,有界性变化。

2) 函数的单调性 (单增、单减)在x

1、x2点比较函数值

f(x1)与f(x2)的大小(注:与区间有关) 3) 函数的奇偶性(定义域对称、f(x)与f(x)关系决定)

图形特点 (关于原点、Y轴对称)

4)函数的周期性(定义域中成立:f(xl)f(x))

3、 反函数与复合函数

反函数:函数f:Df(D)是单射,则有逆映射f反函数

函数与反函数的图像关yx于对称

复合函数:函数ug(y)定义域为D1,函数yf(x)在D上有定义、且f(D)D1。则ug(f(x))gf(x)为复合函数。(注意:构成条件)

4、

函数的运算

和、差、积、商(注:只有定义域相同的函数才能运算)

5、

初等函数:

1(y)x,称此映射f1为f函数的

1) 幂函数:yxa

2)指数函数:yax

3) 对数函数 yloga(x)

4)三角函数

ysin(x),ycos(x),ytan(x),ycotx

5) 反三角函数

yarcsin(x),

yarccoxs)(

yarctan(x)以上五种函数为基本初等函数

6) 双曲函数

ee2xxyarccot(x)

shx

chxxxxxee2xx

thxshxchxeeee

注:双曲函数的单调性、奇偶性。

双曲函数公式

sh(xy)shxchychxshysh(xy)shxchychxshych(xy)chxchyshxshy ch(xy)chxchyshxshyyarshx反双曲函数:yarchxyarthx

作业: 同步练习册练习一

第二节:数列的极限

一、数列

数列就是由数组成的序列。

1)这个序列中的每个数都编了号。

2)序列中有无限多个成员。 一般写成:a1缩写为un

例 1 数列是这样一个数列xn,其中

n1a2a3a4an

xn也可写为:

1121n,n1,2,3,4,5

131415

1n0 可发现:这个数列有个趋势,数值越来越小,无限接近0,记为lim

1、 极限的N定义:

0NnNnxna则称数列xn的极限为a,记成

limxna

n也可等价表述:

1)0

2)0NNnNnN(xna)

xnO(a)

极限是数列中数的变化总趋势,因此与数列中某个、前几个的值没有关系。

二、收敛数列的性质

定理1:如果数列xn收敛,那么它的极限是唯一 定理2 如果数列xn收敛,那么数列xn一定有界

定理3:如果limxna且a>0(a0,当n>N时,xn0x(xn0)

定理

4、如果数列{xn}收敛于a那么它的任一子 数列也收敛,且收敛于a。

第三节:函数的极限

一、极限的定义

1、在x0点的极限

1)x0可在函数的定义域内,也可不在,不涉及f在x0有没有定义,以及函数值f(x0)的大小。只要满足:存在某个0使:(x0,x0)(x0,x0)D。 2)如果自变量x趋于x0时,相应的函数值 f(x)有一个总趋势-----以某个实数A为极限 ,则记为 :limf(x)A。

xx0形式定义为:

0x(0xx0)注:左、右极限。单侧极限、极限的关系

2、x的极限

设:yf(x)x(,)如果当时函数值 有一个总趋势------该曲线有一条水平渐近

f(x)A

线yA-----则称函数在无限远点有极限。记为:limf(x)A

x

在无穷远点的左右极限:

f()lim关系为: xf(x)

f()limf(x)

xlimf(x)Alimf(x)Alimf(x)

xxx

二、函数极限的性质

1、 极限的唯一性

2、 函数极限的局部有界性

3、 函数极限的局部保号性

4、 函数极限与数列极限的关系

第四节:无穷小与无穷大

一、无穷小定义

定义:对一个数列xn,如果成立如下的命题: 0NnNxn注:

1、 则称它为无穷小量,即limxn0

x的意义;

2、xn可写成xn0;(0,xn)

3、上述命题可翻译成:对于任意小的正数,存在一个号码N,使在这个号码以后的所有的号码n,相应的xn与极限0的距离比这个给定的还小。它是我们在直观上对于一个数列趋于0的认识。

定理1 在自变量的同一变化过程xx0(或x)中,函数fx具有极限A的充分必要条件是f(x)A,其中是无穷小。

二、无穷大定义

一个数列xn,如果成立:

G0NnNxnG那么称它为无穷大量。记成:limxn。

x 特别地,如果G0NnNxnG,则称为正无穷大,记成limxn

x特别地,如果G0NnNxnG,则称为负无穷大,记成limxn x注:无法区分正负无穷大时就笼统地称之为无穷大量。

三、无穷小和无穷大的关系

定理2 在自变量的同一变化过程中,如果f(x)为无穷大,则

1f(x)为无穷小;反之,

如果f(x)为无穷小,且f(x)0则

1f(x)为无穷大

即:非零的无穷小量与无穷大量是倒数关系:当xn0时:有

lim0limx1xnx

limlimx1xnx0

注意是在自变量的同一个变化过程中

第五节:极限运算法则

1、无穷小的性质

设xn和yn是无穷小量于是: (1)两个无穷小量的和差也是无穷小量:

limxn0xlimyn0lim(xnyn)0

xx (2)对于任意常数C,数列cxn也是无穷小量:

limxn0lim(cxn)0 xx(3)xnyn也是无穷小量,两个无穷小量的积是一个无穷小量。

limxn0xlimyn0lim(xnyn)0

xx(4)xn也是无穷小量:

xx0limxn0limxn0

xx0(5)无穷小与有界函数的积为无穷小。

2、函数极限的四则运算

1、 若函数f和g在点x0有极限,则

lim(f(x)g(x))limf(x)limg(x)

xx0xx0xx0

2、 函数f在点x0有极限,则对任何常数a成立

lim(af(x))alimxx0xx0f(x)

3、若函数f和g在点x0有极限,则

lim(f(x)g(x))limf(x)limg(x)

xx0xx0xx0

3、 若函数f和g在点x0有极限,并且limg(x)0,则

xx0limf(x)f(x)xx0

lim

xx0g(x)limg(x)xx0极限的四则运算成立的条件是若函数f和g在点x0有极限 例:求下述极限

lim

x3x3x92limx12x3x5x42limx3x2x12xx5322

4、 limx3x4x27x5x33232limxsinxxlimx2xx53x2x1232复合函数的极限运算法则

定理6 设函数yf[g(x)}是由函数yf(u)与ug(x)复合而成,f[g(x)]在点x0的 某去心邻域内有定义,若limg(x)u0,

xx00uu0limf(u)A,且存在00,当xu(x0,0)时,有

g(x)u0,则

xx0limf[g(x)]limf(u)Auu0第六节:极限存在准则

两个重要极限

定理1 夹逼定理 :三数列xn、yn和zn,如果从某个号码起成立:1)xnynzn,

并且已知xn和zn收敛,

2)limxnalimzn,则有结论:

xxlimyna

x

定理2 单调有界数列一定收敛。

单调增加有上界的数列一定收敛;单调减少有下界的数列一定收敛。

例:证明:limx0sinxx1

例:

limx0

例:证明:lim(1xtanxx

limx01cosxx

2 limx0arcsinxx

1x)有界。求 lim(1)x的极限

xx1x

第七节:无穷小的比较

定义:若,为无穷小

limlim0c0c01且

limlimlim

K高阶、低阶、同阶、 k阶、等价~

1、 若,为等价无穷小,则()

2、 若~1 、~1且

lim1111存在,

则: limlim

例:

limx0tan2xsin5x

1 limx0sinxx3x

3 limx0(1x)31cosx12

第八节:函数的连续性与间断点

一、 函数在一点的连续性

函数f在点x0连续,当且仅当该点的函数值f(x0) 、左极限f(x00)与右极限f(x00)三者相等:

f(x00)f(x0)f(x00)

或者:当且仅当函数f在点x0有极限且此极限等于该点的函数值 。

limf(x)f(x0)

其形式定义如下:

xx00x(xx0)f(x)f(x0)

函数在区间(a,b)连续指:区间中每一点都连续。 函数在区间[a,b]连续时装意端点。 注:左右连续,在区间上连续(注意端点)

连续函数的图像是一条连续且不间断的曲线

二、间断点

若:f(x00)f(x0)f(x00)中有某一个等式不成立,就间断,分为:

1、 第一类间断点:

f(x00)f(x00)

即函数在点的左右极限皆存在但不相等,曲线段上出现一个跳跃。

2 、第二类间断点x0:左极限f(x00)与右极限f(x00)两者之中至少有一个不存在

例:见教材

第九节:连续函数的运算与初等函数的连续性

一、 连续函数的四则运算

1.limf(x)f(x0)且limg(x)g(x0),

xx0xx0limf(x)g(x)f(x0)g(x0)

xx02limf(x)f(x0)且limg(x)g(x0),

xx0xx0limxx0f(x)g(x)xx0f(x0)g(x0)

3. limf(x)f(x0)且limg(x)g(x0)0,

xx0limxxf(x)0g(x)f(x0)g(x0)

xDf是严格单调增加(减少)并且连续

反函数连续定理:如果函数f:yf(x)的,则存在它的反函数f并且连续的。

注: 1)反函数的定义域就是原来的值域。

1:xf1(y)yDf并且f1也是严格单调增加(减少)2)通常惯用X表示自变量,Y表示因变量。反函数也可表成

yf1(x)xDf1

复合函数的连续性定理:

设函数f和g满足复合条件gDf,若函数g在点x0连续;g(x0)u0,又若f函数在点u0连续,则复合函数fg在点x0连续。

注:复合函数的连续性可以保证极限号与函数符号的交换:

xx0limf(g(x))f(limg(x))

xx0从这些基本初等函数出,通过若干次四则运算以及复合,得到的种种函数统称为初等函数,并且:初等函数在其定义区间内连续。

第十节:闭区间上连续函数的性质

一、 最大、最小值

设函数:yf(x),xD在上有界,现在问在值域

D1yyf(x),xD

中是否有一个最大的实数?如果存在,譬如说它是某个点x0D的函数值 y0f(x0),则记y0maxf(x)叫做函数在D上的最大值。

xD

类似地,如果 Df中有一个最小实数,譬如说它是某个点x2Df的函数值y2f(x2),则记y2min

二、有界性

xDff(x)称为函数在上的最小值 。

有界性定理:如果函数f在闭区间a,b上连续,则它在a,b上有界。

三、零点、介值定理

最大值和最小值定理:如果函数 f在闭区间a,b上连续则它在a,b上有最大值和最小值,也就是说存在两个点和,使得

f()f(x)f(),亦即

xa,b

f()min xa,bf(x)

f()maxf(x)

xa,b 若x0使f(x0)0,则称x0为函数的零点

零点定理:

如果函数f在闭区间a,b上连续,且f在区间a,b的两个端点异号:f(a)*f(b)0则至少有一个零点(a,b),使f()0

中值定理:

如果函数f在闭区间a,b上连续,则f在a,b上能取到它的最大值和最小值之间的任何一个中间值。

作业:见课后各章节练习。

推荐专题: 函数极限定理证明

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号