首页 > 应用文书 > 证明 > 详情页

数学高中知识点总结(推荐5篇)

2022-07-20 10:39:51

千文网小编为你整理了多篇相关的《数学高中知识点总结(推荐5篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《数学高中知识点总结(推荐5篇)》。

第一篇:数学高中知识点总结

一、集合、简易逻辑

1、集合;

2、子集;

3、补集;

4、交集;

5、并集;

6、逻辑连结词;

7、四种命题;

8、充要条件。

二、函数

1、映射;

2、函数;

3、函数的单调性;

4、反函数;

5、互为反函数的函数图象间的关系;

6、指数概念的扩充;

7、有理指数幂的运算;

8、指数函数;

9、对数;

10、对数的运算性质;

11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)

1、数列;

2、等差数列及其通项公式;

3、等差数列前n项和公式;

4、等比数列及其通顶公式;

5、等比数列前n项和公式。

四、三角函数

1、角的概念的推广;

2、弧度制;

3、任意角的三角函数;

4、单位圆中的三角函数线;

5、同角三角函数的基本关系式;

6、正弦、余弦的诱导公式;

7、两角和与差的正弦、余弦、正切;

8、二倍角的正弦、余弦、正切;

9、正弦函数、余弦函数的图象和性质;

10、周期函数;

11、函数的奇偶性;

12、函数的图象;

13、正切函数的图象和性质;

14、已知三角函数值求角;

15、正弦定理;

16、余弦定理;

17、斜三角形解法举例。

五、平面向量

1、向量;

2、向量的加法与减法;

3、实数与向量的积;

4、平面向量的坐标表示;

5、线段的定比分点;

6、平面向量的数量积;

7、平面两点间的距离;

8、平移。

六、不等式

1、不等式;

2、不等式的基本性质;

3、不等式的证明;

4、不等式的解法;

5、含绝对值的不等式。

七、直线和圆的方程

1、直线的倾斜角和斜率;

2、直线方程的点斜式和两点式;

3、直线方程的一般式;

4、两条直线平行与垂直的条件;

5、两条直线的交角;

6、点到直线的距离;

7、用二元一次不等式表示平面区域;

8、简单线性规划问题;

9、曲线与方程的概念;

10、由已知条件列出曲线方程;

11、圆的标准方程和一般方程;

12、圆的参数方程。

八、圆锥曲线

1、椭圆及其标准方程;

2、椭圆的简单几何性质;

3、椭圆的参数方程;

4、双曲线及其标准方程;

5、双曲线的简单几何性质;

6、抛物线及其标准方程;

7、抛物线的简单几何性质。

九、直线、平面、简单何体

1、平面及基本性质;

2、平面图形直观图的画法;

3、平面直线;

4、直线和平面平行的判定与性质;

5、直线和平面垂直的判定与性质;

6、三垂线定理及其逆定理;

7、两个平面的位置关系;

8、空间向量及其加法、减法与数乘;

9、空间向量的坐标表示;

10、空间向量的数量积;

11、直线的方向向量;

12、异面直线所成的角;

13、异面直线的公垂线;

14、异面直线的距离;

15、直线和平面垂直的性质;

16、平面的法向量;

17、点到平面的距离;

18、直线和平面所成的角;

19、向量在平面内的射影;

20、平面与平面平行的性质;

21、平行平面间的距离;

22、二面角及其平面角;

23、两个平面垂直的判定和性质;

24、多面体;

25、棱柱;

26、棱锥;

27、正多面体;

28、球。

十、排列、组合、二项式定理

1、分类计数原理与分步计数原理;

2、排列;

3、排列数公式;

4、组合;

5、组合数公式;

6、组合数的两个性质;

7、二项式定理;

8、二项展开式的性质。

十一、概率

1、随机事件的概率;

2、等可能事件的概率;

3、互斥事件有一个发生的概率;

4、相互独立事件同时发生的概率;

5、独立重复试验。

必修一函数重点知识整理

1、函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(―x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(―x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3、函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=―x+a)的对称曲线C2的方程为f(y―a,x+a)=0(或f(―y+a,―x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a―x,2b―y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a―x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x―a)与y=f(b―x)的图像关于直线x=对称;

4、函数的周期性

(1)y=f(x)对x∈R时,f(x +a)=f(x―a)或f(x―2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=―f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5、方程k=f(x)有解k∈D(D为f(x)的值域);

6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7、(1)(a>0,a≠1,b>0,n∈R+);

(2)l og a N=(a>0,a≠1,b>0,b≠1);

(3)l og a b的符号由口诀“同正异负”记忆;

(4)a log a N= N(a>0,a≠1,N>0);

8、判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且唯一;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10、对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f―1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f――1(x)]=x(x∈B),f――1[f(x)]=x(x∈A)。

11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13、恒成立问题的处理方法:

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解。

拓展阅读:高中数学复习方法

1、把答案盖住看例题

例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

2、研究每题都考什么

数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

3、错一次反思一次

每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

4、分析试卷总结经验

每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

第二篇:数学高中知识点总结

空间两条直线只有三种位置关系:平行、相交、异面。

按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp。空间向量法。

两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法。

若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点――相交直线;(2)没有公共点――平行或异面。

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行。

①直线在平面内――有无数个公共点

②直线和平面相交――有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角;b、直线与平面平行或在平面内,所成的角为0°角。

由此得直线和平面所成角的取值范围为[0°,90°]。

最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角。

三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的`性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行――没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

第三篇:数学高中知识点总结

圆与圆的位置关系的判断方法

一、设两个圆的半径为R和r,圆心距为d。

则有以下五种关系:

1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。

2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

3、d=R―r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

4、d<r―rp=""两圆内含;两圆的圆心距离之和小于两圆的半径之差。< p="">

5、d<r+rp=""两园相交;两圆的圆心距离之和小于两圆的半径之和。< p="">

二、圆和圆的位置关系,还可用有无公共点来判断:

1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。

2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

第四篇:数学高中知识点总结

★高中数学导数知识点

一、早期导数概念――――特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)―f(A),发现的因子E就是我们所说的导数f(A)。

二、17世纪――――广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。

三、19世纪导数――――逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε―δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。

四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。

★高中数学导数要点

1、求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2、求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

变化情况:

(4)检查f(x)的符号并由表格判断极值。

3、求函数的最大值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

4、解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5、导数在实际生活中的应用:

实际生活求解最大(小)值问题,通常都可转化为函数的最值。在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

第五篇:数学高中知识点总结

一、平面的基本性质与推论

1、平面的基本性质:

公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

公理2过不在一条直线上的三点,有且只有一个平面;

公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2、空间点、直线、平面之间的位置关系:

直线与直线―平行、相交、异面;

直线与平面―平行、相交、直线属于该平面(线在面内,最易忽视);

平面与平面―平行、相交。

3、异面直线:

平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

两条直线不是异面直线,则两条直线平行或相交(反证);

异面直线不同在任何一个平面内。

求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

二、空间中的平行关系

1、直线与平面平行(核心)

定义:直线和平面没有公共点

判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

2、平面与平面平行

定义:两个平面没有公共点

判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

三、空间中的垂直关系

1、直线与平面垂直

定义:直线与平面内任意一条直线都垂直

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

性质:垂直于同一直线的两平面平行

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

2、平面与平面垂直

定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

判定:一个平面过另一个平面的垂线,则这两个平面垂直

性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

推荐专题: 复合函数极限证明

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号