千文网小编为你整理了多篇相关的《证明函数收敛》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《证明函数收敛》。
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。
例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。
解析:令f(a)a2(3bc)ac23b23bc
⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。
当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20, ∴abc时,不等式取等号。
4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。
3abc222解析:2 消去c得:此方程恒成立, a(b2)ab2b10,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,
34。 3② 构造函数逆用判别式证明不等式
对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2
由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。
例3.设a,b,c,dR且abcd1, 求证:4a14b14c14d1﹤6。 解析:构造函数:
f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)
2=8x22(4a14b14c14d1)x4.(abcd1) 由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)( =(1axa)2(149的最小值。 abc2bxb)2(3cxc)2
1492)x12x1,(abc1) abc111由f(x)0(当且仅当a,b,c时取等号),
632149得⊿≤0,即⊿=144-4()≤0
abc111149
∴当a,b,c时,()min36 632abc
构造函数证明不等式
1、利用函数的单调性
+例
5、巳知a、b、c∈R,且a bmb[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。
ax+
,其中x∈R,0
bxbx证明:令 f(x)= ∵b-a>0 ba+ 在R上为减函数 bxba+从而f(x)= 在R上为增函数
bx∴y= ∵m>0 ∴f(m)> f(0)
∴ama> bmb例
6、求证:ab1ab≤
ab1ab (a、b∈R)
[分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。
[证明]令 f(x)=
x,可证得f(x)在[0,∞)上是增函数(证略) 1x 而 0
得 f(∣a+b∣)≤ f(∣a∣+∣b∣)
即: ab1ab≤
ab1ab
[说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。
2、利用函数的值域
例
7、若x为任意实数,求证:—
x11≤≤ 221x2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。
1x222x2证明:设 y= , 则yx-x+y=0 21x ∵x为任意实数
22 ∴上式中Δ≥0,即(-1)-4y≥0 1 411得:—≤y≤
22x11 ∴—≤≤
21x22 ∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。
另证:类比万能公式中的正弦公式构造三角函数更简单。
例
8、求证:必存在常数a,使得Lg(xy)≤ Lga.lg2xlg2y
对大于1的任意x与y恒成立。
[分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。
22证明:∵lgxlgy > 0 (x>1,y>1) ∴原不等式可变形为:Lga≥
lgxlgylgxlgy22
2(lgxlgy)2lgxlgy 令 f(x)= == 1222222lgxlgylgxlgylgxlgylgxlgy
22 而 lgx>0,lgy>0, ∴lgx+lgy ≥ 2lgxlgy > 0 ∴2lgxlgy≤1 22lgxlgy ∴ 1
从而要使原不等式对于大于1的任意x与y恒成立,
只需Lga≥2即 a≥10
2即可。
故必存在常数a,使原不等式对大于1的任意x、y恒成立。
3、运用函数的奇偶性
xx
9、证明不等式:
xxx2xx ∵f(-x)=- = x+ x122212xxx
[1-(1-2)]+ 12x2xx =-x+= f(x) x122 = ∴f(x)的图象关于y轴对称
x ∵当x>0时,1-2
证明数列收敛
证明函数fx
凸函数证明
证明偶函数
函数极限证明