千文网小编为你整理了多篇相关的《证明零点定理(优秀范文五篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《证明零点定理(优秀范文五篇)》。
教案
课题:零点存在定理 授课人:
一、内容及内容解析:
本章位于全书的第3章,零点主要是解决方程求解的问题,应用函数思想的方法,把方程与函数相结合,它在较难方程的求根方面有巨大的贡献,而零点存在定理能确定零点的存在范围,从而近似的确定零点的值,也即方程的近似根.各个内容之间的联系:
方程的根零点零点存在定理
二分法 二、三维目标:
知识与技能:会使用零点存在定理解决问题,准确确定根的范围,并且使用二分法找到相应方程的近似解.过程与方法:通过分析零点附近的值的关系,得到f(a)f(b)0的特点,并且通过辨析引出定理,得到定理后,还要针对定理中的每一项进行辨析,得知定理中的每一项必不可少.通过定理我们知道了零点存在的区间,为了得到零点的值我们又引入了二分法,从而能近似的求解出零点.情感态度价值观:让学生了解到每一点数学知识都是环环相扣的,并初步体会到函数思想的巧妙转化,感受到方程与函数的联系,并且得出另一种解方程的方法,让学生体会到数学教学的巧妙之处和知识与知识的紧密联系.三、教学难点与重点:
[难点] 二分法的使用及对定理的理解.[重点] 定理的使用及求解方程的近似根.四、设计教学
上节课我们学习了零点的定义,所以我们知道了如果画出了函数图像,我们就能知道函数是不是有零点,那么如果有些方程的相应函数我们不会画图像怎么办?我们还能知道函数有没有零点吗?通过今天的学习,我们就可以不画图像直接知道函数是否有零点.1、引入定理
通过之前的例题,我们知道函数的零点可能有若干个,为了使问题简化,我们首先考虑函数只有一个零点的情况.请大家思考:若函数y=f(x)是连续不断的函数,且有一个零点,则函数零点两端的函数值有何特征?
因为函数只有一个零点,所以函数图象与x轴只有一个交点。那函数图象与x轴会有哪些位置关系呢?不难想到(无非是两种情况):一种为函数图象不穿
过x轴;另一种是函数图象穿过x轴。
(1)大家先看第一种情况,函数零点附近函数值有何特征呢?(同学回答)
这种情况下,零点附近函数值同号。那我在零点两端各选一个代表a,b,则它们对应的函数值f(a)、f(b)的乘积大于0;
(2)我们再看另一种情况,此时零点附近函数值有何特征呢?
(图像在PPT上显示动画过程,让学生观察出图像穿过x轴的过程,然后知道零点附近的值相反.)
无论怎么穿过,都有零点左右函数值异号,同样,我在零点两端各选一个代表a,b,则它们对应的函数值f(a)、f(b)的乘积就小于0.【分析】
(1)如果函数的图象是连续不断的一条曲线,满足f(a)f(b)>0,那么函数在区间(a,b)内一定有零点吗?
①(不一定)那好,你能给大家举一个反例吗?
②(一定)好,你先请坐。其他同学有不同意见么? 如果函数有零点,说明函数图象一定与x轴有交点。条件告诉我们f(a)f(b)>0,那我不妨设f(a)、f(b)同时为正,大家请看,通过这两个点的函数图象一定能与x轴有交点么?
显然是不一定的,比如我举的这个反例。
这就说明满足这样条件的函数,不能确定 函数一定有零点。
(2)如果函数的图象是连续不断的一条曲线,满足f(a)f(b)
①(一定)好,那其他同学呢?都同意他的观点吗? ②(不一定)你能为大家说明一下你的理由么?
由于函数的图象是连续不断的,并且端点函数值异号,所以无论怎么画,函数图象一定会与x轴有交点,从而说明函数怎么样?——一定有零点!
这样,我们就得到了判断函数是否有零点的方法,即函数零点存在性定理:
2、零点存在定理
若函数y=f(x)的图象在区间[a,b]上是连续不断的一条曲线,且有f(a)f(b)
现在我有一个问题:若函数满足在[a,b]上有f(a)f(b)
如果可以请说明理由,不能的话请同学们举个反例.在这个反例中,f(a)0,f(0)=0.5
我们来看,这个定理是我们通过结合函数图象探究而得的,而至于它的严格证明,需要到大学阶段再去研究。
这样,我们通过引入函数的零点,将方程与函数建立起了联系,并且为我们提供了一种新的解决方程问题的途径。此前我们学习过的一元一次方程以及一元二次方程都有公式解,但是对于高次方程、超越方程等其他形式的方程而言,通常没有求根公式。而通过函数零点存在性定理,就可以去研究这样一般形式方程根的问题了。
【例】求函数f(x)lnx2x6的零点个数.【解析】因为f(2)0,f(3)0,所以在(2,3)之间有零点,又因为函数f(x)在(0,)上是单调递增的,所以这个函数只有一个零点.根据零点存在定理,我们知道函数是否有零点,但是如果我们想知道零点的值怎么办呢?接下来,我们要学习一个新的求根方法-----二分法.3、二分法(求根的近似值)
我们就以上面的例子来研究,即如何求f(x)lnx2x6的零点呢? 一个最直观的想法就是:如果我们把零点存在的范围(2,3)尽量缩小,那么在一定的精确范围内,我们就可以得到零点的近似值.那我们如何缩小范围呢?显然最简单、最可行的方法就是“取中点”.接下来,我们解答上面的例子来看看二分法是如何运用的.【解析】应用零点存在定理,我们知道了f(x)lnx2x6在(2,3)之间有一个零点.接下来我们要用“取中点”的方法缩小零点存在的范围.取(2,3)的中点2.5,用计算器计算f(2.5)0.0840,而f(3)0,那么f(2.5)f(3)0,所以在(2.5,3)之间有零点,即缩小了零点所在的范围.再取区间(2.5,3)的中点2.75,用计算器计算f(2.75)0.5120,而f(2.5)0,即:f(2.5)f(2.75)0,所以在(2.5,2.75)之间有零点.我们可以看出零点存在的范围越来越小了,如果一直取下去,零点存在的范围会越来越小,这样,在一定的精确度下,我们就可以在有限次重复步骤之后,将所得的零点存在的区间内任意一点作为函数零点的近似值.我们把上面例题缩小区间的过程画在表格中:
如果当精确度为0.01时,由于|2.5390625-2.53125|=0.0078125
1、确定区间[a,b],验证f(a)f(b)0,给定精确度;
2、求区间(a,b)的中点x1;
3、计算f(x1)的值;
(1)若f(x1)0,则x1就是函数的零点;
(2)若f(a)f(x1)0,则令bx1,此时零点x0(a,x1);
(3)若f(x1)f(b)0,则令ax1,此时零点x0(x1,b).4、判断是否达到精确度:即若|ab|,则零点的近似值是a(或b);否
则重复2-4步.【课堂练习】
1、借助计算器,用二分法求方程x3lgx在区间(2,3)的近似解(精确到.0.01)
2、借助计算器,用二分法求函数f(x)lnx到0.1)
【作业】
2在区间(2,3)内的零点.(精确xP108,1、3、4、6和P109,3、4.
过程与方法是这样体现的!
一、开放的情境更易于引导学生做数学
根据高中学生的认知水平,开发利用教材的探索性内涵,创造性地使用教材,设计了能启发学生思维的“温度连续变化”情境,引导学生得出本节课的重要结论:零点附近两侧的图象特征及代数特征(函数值异号)。这一片段的课堂教学实录如下:
问题1 图1是某地从0点到12点的气温变化图,假设气温是连续变化的,请将图形补充成完整的函数图象。这段时间内,是否一定有某时刻的气温为0度?为什么?
师:在补充图象的时候请考虑:图象与x轴是否一定相交。师:有哪位同学得到与x轴不相交的图象吗?(所有同学都摇头表示不能画出)师:困难在哪?为什么画不出?
生丁:因为气温的变化连续不断,而且有两个已知的温度是一正一负。师:很好,因为这两个原因使得图象与x轴一定相交。那么,交点可能会在哪儿?
生众:0到12之间。
师:气温变化图其实也是一个函数的图象,它与x轴的交点就是函数的零点,这样我们已经发现了函数存在零点的一种判断方法。
师:函数存在零点的关键是什么?
生众:函数图象是连续不断的;一个点在x轴下方,一个点在x轴上方。
从上述过程可见,通过 “问答”式这种形式引导学生进行探究,实践证明效果较好。但对高中学生来说,数学学习是一个充满价值判断的过程,最有效的是有引导又不受干扰的思考,属于学生自己的独立思考。美国数学家哈尔莫斯指出:“学习数学的唯一方法是做数学”,我们认为:让学生以研究者的身份通过动手做来解决这一问题,先做后说,也许效果会更好。鉴于此,我们对这一教学片段重新进行了设计,把如下的修改问题作为学生深度思考的一个源题:
问题2 图1是某地从0点到12点的气温变化图,假设气温是连续变化的,请用二种不同的方法将图形补充成完整的函数图象。这段时间内,是否一定有某时刻的气温为0度?为什么?
在课外活动中将印有这个题目的纸张发给学生,要求学生通过研究设计出二种不同的连结方法。
上述的图形连接问题起点低,直观性强,简单而内涵丰富,且结论开放,符合高中学生喜欢动手的特点,适合不同层次学生进行探究。并在动态生成中很自然地“更新”了学习方式:让学生从“听”数学的学习方式,改变成在教师的指导下“做”数学,研究数学。
二、“预设”与“生成”结合的课堂更精彩
原问题给学生一个图,学生会用最方便直接的方法进行连接(一条直线段),在转换了情境问题后,一次就给学生二个相同的图形,要求进行不同的连接,设计第二个图的连接有的学生会面临困难,教师适时提示:“请大家再试着画画看”,“独立思考几分钟”,以更好地激发学生的探究欲,在尝试画图和反复的思索中,—种、两种、三种„„没有预设的连接方法接踵而至,学生在画图过程中,不拘一格大胆思考,使课堂出现“生成”的精彩。学生是聪明的,无穷的遐想和个性化理解给不同的学生带来了不同的收获(下面仅列举一部分成果,课堂上用实物投影展示)。
1.让学生在表述结果中进行数学交流
教师先从连接线的几何和数量特性着手,引领学生进行课堂交流。学生画出的图形是五花八门的:
(1)用线段连接(如图2、3等)。
(2)用曲线段连接,学生给出了很多连接方法,如图4、5、6、7等都是学生给出的。
学生画出的图形为课堂教学提供了丰富的资源,其中包括在区间(a,b)内有单一零点的函数是单调的、不单调的、有多个交点的等。而且也还有因为没有注意到条件要求而画错的图形(如图5),这有利于纠正部分学生对函数概念理解的偏差。
实践证明,每一个学生都希望自己是一个发现者、研究者和探索者。学生从这一问题的研究出发,放飞想象,上述这道教师眼里简单的画图题,仅仅在几分钟里,学生通过观察、猜想、尝试,就探索出了这么多种不同的画法,有助于加深对本节课所学知识的理解,为后续学习积累大量的素材,逐步学会思考。
2.课堂研究中的动态生成是灵动的教学资源
构建动态生成的课堂必须把学生置于教学的出发点和核心地位,让学生充分地开展自主学习,课堂才能焕发出勃勃生机,呈现出一道优美、流动的风景线,才能使课堂真正为学生的发展服务。在课堂上要及时合理地捕捉学生研究得到的动态生成,让它多一些真实的美丽,多一些有效的精彩。
(1)学生画出的图形,蕴含着丰富的教学资源。从图象与x轴交点(即零点)的个数看,可以构造出任意有限个零点的连接图。那么,是否存在有无限个零点的连接图?有的学生经过思考后提出:将线段设置为与x轴重合,如图8,其图象是不间断的,显然该函数的零点为一个区间,有无限多个。
给学生几分钟的思考时间,给学生“灵机一动”、“茅塞顿开”的机会,就可能出现“柳暗花明”“出人意料”的结果,进而极大地激发学生的探究欲望,并充分享受发现的喜悦。
(2)从这些图形零点附近图象的代数特征看,可分成四种情形:函数值异号(+-;-+);函数值同号(++;--),这样可把学生引向本节课的重要结论的研究。
(3)前面学生研究出的连接图,还可用来协助解决二节观摩课中提出的一系列问题,加深学生对本课内容的理解,如:
问题1 若问题2 若,函数,函数
在区间在区间
上一定没有零点吗? 上只有一个零点吗? 内有且只有一个零点? 问题3 能否增加条件,使得函数在区间是否一定有f(a)f(b)
师:所以零点存在性定理可以判断当条件满足时,函数在区间内一定有零点,但不能确定零点的个数。
师:能否增加条件,使得函数在区间生众:单调性。
师:具体说,可以增加这样的条件:函数在区间这里我们利用图7就能回答这几个问题。
这样的生成,让平淡的课堂变得趣味无穷,让平常的课堂情节变得迭宕起伏,不仅将学生在画图过程中动态生成的信息转化为有效的教学资源,并在动态中促
内为单调函数。
内有且只有一个零点? 使学习内容不断生成,知识不断建构并得到内化,使数学教学成为激情与智慧综合的生成过程的课堂教学。
古今中外凡有重大成就的人,在其攀登科学高峰的征途中,都会给思考留有一定时间。据说爱因斯坦狭义相对论的建立,经过了“十年的沉思”。他说:“学习知识要善于思考、思考、再思考,我就是靠这个学习方法成为科学家的。”许多教师在课堂教学中,由于没有抓住教学内容的核心,往往堆积了大量细枝末节问题,教师讲得多,给学生思考的时间少,甚至不给学生思考机会,导致学生思维能力得不到培养。因此,教学设计时应给学生预留更多的思考时间和空间。学习的效果最终取决于学生是否真正参与到学习活动中,是否积极主动地思考。如果学生能学会思考和研究,这比什么目标都有意义。
(浙江省衢州市教研室 李世杰)
(摘录自人民教育出版社网站:精彩的生成来自学生的自主研究)