千文网小编为你整理了多篇相关的《倒数的认识学情分析(范文6篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《倒数的认识学情分析(范文6篇)》。
设计说明
本节课主要采用自主探究与小组合作的形式进行教学。这样教学不仅可以让学生体验到创造的过程,也可以增强学生的合作意识。本节课的教学设计主要体现以下两个方面:
1.创设情境,激发兴趣。
本节课从对联导入,使学生发现对联的妙趣所在,激发学生探索数学奥秘的兴趣,为学习倒数的意义作铺垫,同时也为宽松的课堂氛围打下一个良好的基础。
2.注重学生的思维推进,有效地实现概念的建构。
在教学倒数的概念时,教师适时地抛出问题:在这个概念中你觉得哪个词比较关键?引导学生的思维逐步推进,顺利地解决了“乘积为1”“两个数”“互为倒数”这三者的关系,培养了学生初步的逻辑思维能力;然后通过探究0和1的倒数问题,使学生对倒数的概念完成真正意义上的建构。
课前准备
教师准备 PPT课件
教学过程
⊙创设情境,引入新课
1.故事激趣。
乾隆皇帝很喜欢旅游。有一次,他来到“天然居”大酒楼吃饭,看到这里环境非常好,像来到了天上仙境一般,于是写了一副非常有趣的对联“客上天然居,居然天上客”。
这副对联有趣在哪里呢?
(这副对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果,成为了千古佳联)
2.引入新课。
其实,在数学里两个数之间也有这样有趣的关系,今天我们就来学习有这样关系的两个数。(板书:倒数)
设计意图:用故事中的对联导入,让学生在宽松、活跃的氛围里,产生对新知的求知欲。
⊙合作交流,探究新知
1.理解倒数的意义。
(1)观察算式,通过计算发现规律。
师:请看大屏幕(课件出示教材31页第一部分内容),先计算,再观察这些算式,同桌互相说一说有什么发现。
(发现:每个算式的积都是1;两个乘数的分子、分母互相颠倒。教师说明像这样的两个数互为倒数)
(2)初步理解倒数的意义。
师:你能根据自己的理解说一说什么是倒数吗?
引导学生归纳倒数的意义:乘积为1的两个数互为倒数。(板书)
教师强调:倒数是对两个数来说的,它们是相互依存的,不能单独存在。必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
例如:×=1,所以和互为倒数,也可以说是的'倒数或的倒数是,但不能说是倒数或是倒数。
师:像这样互为倒数的两个数你能再说出几组吗?(指名回答)
师:刚才我们学习了倒数的意义,你觉得哪些词比较关键?
(乘积为1;两个数;互为)
2.结合实际探索,深入理解倒数的意义。
(1)引导学生回忆长方形的面积公式。
(长方形的面积=长×宽)
(2)(课件出示教材31页的表格)观察表格中给出的长方形的长和宽的数值,它们有什么特点?
(长方形的长和宽的数值互为倒数)
(3)利用长方形的面积公式进行计算,并说说你的发现。
(学生结合给出的数值进行计算,发现互为倒数的两个数的乘积为1)
设计意图:通过观察比较,教师明确指出倒数的意义,并使学生通过具体的例子,初步感受倒数是对两个数来说的,不能孤立地说某一个数是倒数。同时借助计算长方形的面积,使学生进一步感知倒数的意义。
3.探究求一个数的倒数的方法。
(1)一个分数的倒数的求法。
提问:的倒数是多少?怎么求?
学生交流汇报,教师根据学生的汇报进行展示:
把的分子、分母交换位置,的倒数就是。
(2)一个整数的倒数的求法。
(课件出示教材31页第三部分内容)提问:每个长方形的面积都是1,也就是说,每个长方形的长和宽的数值是什么关系?(长方形的长和宽的数值互为倒数)
提问:2的倒数是多少?2可以看成分母是几的分数?
学生小组内讨论、交流,全班汇报。
教学内容:
苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。
教学目的要求:
认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。
教学重点难点:
掌握求倒数的方法,能熟练得求一个数的倒数。
教学过程:
一、导入新课
问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?
二、新授
教学例题
(1)出示例7
下面的几个分数中,哪两个数的乘积是1?
(2)学生回答。
(3)引出概念。
乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。
(4)学生举例来说。进行及时的'评议。
(5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?
归纳方法
小组讨论:
观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?
全班交流。
求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
问:5的倒数是几?1的倒数是几?
学生回答,并说原因。
追问:0有倒数吗?为什么?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。
除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
教学“练一练”
学生回答。
提醒学生正确地书写格式。
三、巩固练习。
1、做练习六第17题
学生填书上后,集体订正,并说说是怎样想的。
2、做练习六第18题
指名口头回答,选择两题让学生说说思考的过程。
3、做练习六第19题
重点引导学生讨论每一组数的规律。
4、做练习六第21题
5、做思考题
联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?
四、全课总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
五、作业
练习六第20题
板书设计:
(略)
教学目标:
1.使学生理解倒数的意义。
2.使学生掌握求一个数的倒数的方法。
3.渗透辩证唯物主义关于事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的概念
教学难点:会灵活求真、假分数、小数、整数、带分数的倒数。
教学策略:
1、因为学生已经有了前面分数乘法计算的基础,所以本节课教师可以完全放手让学生通过自学和足够的练习掌握倒数的概念以及求一个数的倒数的方法。
2、教师应让学生明确倒数的两个条件:①两个数。
②这两个数的乘积是1。乘积是1的两个数叫做互为倒数。
并让学生讨论:
①怎样的两个数互为倒数?
②一个数能叫做倒数吗?
③5是倒数这样的说法对吗?为什么?
3、在学生讨论的`基础上说明:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。这个数可以是小数,分数和整数。
然后让学生自己创作几组倒数,并对学生的回答让学生自己发表意见,用倒数的意义来检验所举的例子对不对。
4、教学求一个数的倒数的方法时要引导学生观察:互为倒数的两个数的分子、分母是互相调换位置的。并思考:
①所有的自然数都有倒数吗?1的倒数是几?
②0有没有倒数?为什么?
③怎样求一个数的倒数?
引导学生得出:
1的倒数是1,0没有倒数。求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
5、使学生明确:
(1)自然数的倒数要先把它化成分母是1的假分数,再按调换分子、分母的方法来求倒数。
(2)求带分数的倒数要先把它化成假分数,再按调换分子、分母的方法来求倒数。
(3)求小数可以先把它化为分数再调换分子、分母的方法来求倒数。
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的.两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
四、训练、深化
1.下面哪两个数互为倒数
(出示课件一下载)
2.求出下面各数的倒数
(出示课件二下载)
3.判断
①真分数的倒数都是假分数。
②假分数的倒数都小于1。
③0没有倒数。
4.提高
会填了吗?
如果末尾加上=1怎么填?
如果末尾加上=0怎么填?
如果末尾加上=2怎么填?
五、课堂小结
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?
六、课后作业
练习六2、3
七、板书设计
略
教学目标
1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点和难点
1.正确理解倒数的意义及互为的含义。
2.正确地求出一个数的倒数。
教学过程设计
(一)激发兴趣,引出概念
1.投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)
2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1 两个数
3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)
4.举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。
5.思考:1的.倒数是几?为什么?0有倒数吗?为什么?
板书:1的倒数是1。0没有倒数。
(二)求一个数的倒数
同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?
1.出示前面的投影,找特点。
观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。
问:谁来说说你发现了什么?
生:互为倒数的两个数,是分子、分母交换了位置。
师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。
学生说老师板书:
3.同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。
谁来给同学们汇报一下?(2~3名)
板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。
问:老师为什么要空出一些地方?
生:0除外。
问:为什么要加上0除外?(板书:0除外。)
问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。
4.课堂练习。
写出下面各数的倒数:
35的倒数是怎么想的?
问:2的倒数是几? 10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?
5.写出1.5的倒数,怎样做?
(三)课堂总结
我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?
下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。
(四)巩固练习
1.投影。
问:怎么填得这么快,你是根据什么填的?
问:①谁能回答?
②你根据什么填的?
③为什么根据倒数的意义填?
看下一组题:
问:怎么填?根据什么?与(2)有什么不同?
师:所以做题时要认真审题,看清符号,千万不能出审题错误。
2.下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)
3.判断下面各题。对的举,错的举,并说明理由。
投影出示:
(1)乘积是1的两个数互为倒数。
(2)2.5和0.4互为倒数。
师:你们是怎么想的?
生:2.5和0.4乘积是1,所以是对的。
(3)因为1的倒数是1,所以0的倒数是0。
问:错在哪里?
问:错在何处?
问:这道题错在哪了?
生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。
4.游戏。
每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。
评比表扬优胜,找出谁给前面的同学改了错。
(五)作业
课本24页第3,5,6题。
课堂教学设计说明
1.这节课的设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。
2.这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:
知道倒数的意义,会求一个数的倒数
教学难点:
1、0的倒数的求法。
教具准备:
多媒体课件
教学过程:
一、开门见山,揭示课题
1、出示课题:倒数的认识
老师:今天我们一起来学习第三单元分数除法的第1课时:倒数的认识
2、理解字的意思
老师:上课之前老师想请同学帮我解决个问题:“倒”这个字怎么读的?
学生:倒dǎo,dào
师:这两种读音表示的意思一样吗?学生用茶杯演示。
3、老师:你觉得在这里这个“倒”字怎么读?你见过这样的数吗?
学生举例说说。
看到这个课题,在你的头脑中会产生什么问题?
(设计意图:学生通过自己对字的理解,初步感知什么是倒数)
二、探索新知,突破重点
(一)、倒数的意义
1、初步探究
师:请看这两组算式,我们分组完成,比比哪组同学速度快。
学生计算,交流
老师:做第1组算式的同学完成的快
这时学生可能会说:不公平,第1组的题目简单,得数都是1、
老师:为什么第1
组的算式简单,有什么特点?
生:每组数中两个分数的分子、分母的位置颠倒过来了。
生:都是乘法。
生:得数都是1、
老师:这样的两个数互为倒数,你们能用一句话说说什么是倒数吗?
学生试着概括
师概括并板书:乘积是1的两个数互为倒数。
师:找一找关键词,说说你对这句话的理解。
生1:乘积是1、是乘法,而且积是1
生2:两个数,只能是两个数,三个,四个数的乘积是1也不能说它们互为倒数。
生3:互为倒数。
老师:“互为倒数”是什么意思呢,谁愿意说说
老师:这学期我们班来了几位新同学,经过几周的相处,你们之间互相成为朋友了吗?谁能告诉大家,你是怎样理解“互相成为朋友”这句话的?
生:我是他的朋友,他也是我的朋友。
师:那我们举个例子说说。比如3/8和8/3的乘积是1
,我们就说因为3/8和8/3互为倒数。所以3/8的倒数是8/3;也可以说8/3的倒数是3/8。(示范说)
师:同桌两个人举出倒数的例子,并仿照刚才老师说的用上“因为”
“所以”。
(设计意图:学生在计算练习中体会互为倒数的两个数的乘积是1,同时也体会到互为倒数的两个数的练习与区别,为求一个数的倒数做准备。)
2、深入剖析
师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
师:和的积是1,我们就说(生齐说)
师:5和的乘积是1,这两个数的关系可以怎么说?
(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
(二)、倒数的求法
1、求分数的倒数
师:(出示课件例1)下面哪两个数互为倒数?请同位的同学之间在一起交流一下,把它们找出来。(学生合作交流,认真寻找。)
老师:你是怎样找出来的?
学生回答,老师问:五分之三的倒数和五分之三相等吗?
学生:不相等
板书:
2、求整数的倒数
师:整数6的倒数怎么求?
生:把6看成是分母是1的分数,再把分子分母调换位置。
板书:
3、交流一下1和0这两个特殊的数。
师:那1
的倒数是几呢?(学生很快就说出来了,并说明了理由)
师:0的倒数呢?生:没有。
师:为什么?
学生讨论交流
生1:因为0和任何数相乘都得0,不可能得1。
生2:分子是0的分数,实际上就等于0,0可以看成是0/2、0/3……把这些分数的分子分母调换位置后分母就为0了,而分母不可以为0。
师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1
的倒数是1,0没有倒数。
生齐读求一个数倒数的方法。
(设计意图:学生在讨论交流中探索1、0的倒数,能很好的理解)
三、巩固练习
1、写出下面各数的倒数。
2、写出下面各数的倒数。
①0、8的倒数是。
②的倒数是。
3、争当小法官,明察秋毫。
(1)1的倒数是1。
(2)A的倒数是1/A。
(3)因为0、5×2=1,所以2是倒数。
(4)真分数的倒数都大于1,假分数的倒数都小于1。
(5)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。
四、总结反思、评价体验
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
五、课堂小结
师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!
推荐专题: 倒数的认识学情分析