千文网小编为你整理了多篇相关的《倒数的认识学情分析(推荐5篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《倒数的认识学情分析(推荐5篇)》。
一、活动内容:10以内的顺数倒数
二、活动目标:
1.理解10以内的数量的排列顺序,知道它们是顺数还是倒数,发展幼儿思维的敏捷性、逻辑性。
2 .在操作中提升动手能力,激发兴趣并学会大胆表述操作结果。
3.对生活中运用顺数、倒数的事例感兴趣,在游戏活动和生活中,学会运用顺数、倒数。
三、活动准备:
1、材料准备:ppt,操作材料(幼儿用数字卡、点子卡、师用数字卡点卡、磁钉等)、幼儿左手标记。
2、经验准备:幼儿已经掌握了10以内的点数,对数学学习有浓厚的兴趣。
3、环境准备:为幼儿创设宽松、和谐的心理环境;在区角中增加适合幼儿进行顺着数和倒着数的操作材料。
四、活动过程:
(一)开始部分:创设情境,引入课题
出示信封:小猴今天到我们班做客,给小朋友带来了礼物,是什么呀(信封)信封里装有什么呢?
(二)基本部分:学习顺数,倒数
1、信封里跳出来零乱的点子卡和数字卡(逐一出示在黑板上),我们帮它们排排队:(幼儿操作)要求:先把点子卡和数字卡分类,把数字卡放一堆,点子卡放一堆,然后从你的左手开始排,先帮数字卡排好队,再帮点子卡排好队。
设疑:
(1)你是怎样排的?
(2)你发现了点子卡有什么变化?
小结:数字从小到大顺序排列的,后一个数比前一个数多1,这样的'一列数叫顺数;数字从大到小顺序排列的,后一个数比前一个数少1,这样的一列数叫倒数。
2.多形式引导幼儿感知10以内的顺倒数。
(1)以小猴去观看“火箭发射”的故事情景引入。
(2)小猴要经过一座小桥,引导幼儿感知顺数逐个多1、倒数逐个少1的数量关系。(上桥顺数逐个多一,下桥倒数逐个少一)
教师:小猴上桥时我们数数1-10就是顺着数, 小猴下桥时我们数数10-1就是倒着数。
(3)小猴过了五彩桥,路过十字路口正好遇见红灯(练习倒数)并结合保心社会性进行交通安全教育。
(4)到了火箭发射指挥中心,通过乘电梯,进一步让幼儿复习顺数的排列顺序(1楼DD10楼)。
(5)观看火箭发射,让幼儿用倒数的知识来进行火箭发射前的倒计时活动。
(6)小猴和小猪要回家了,乘坐电梯下楼,再次感知倒数(10楼DD1楼)
(7)游戏“我们一起跳房子”
教师:跳房子的游戏好玩吗?小朋友想想学,好,我们一起学吧.
(四)延伸活动:
下课后我们一起到活动亭玩跳房子的游戏.
教学说明:
让学生经历提出问题、自探问题、应用知识的过程,理解倒数的意义自主总结出求倒数的方法。
反思:
本节课中,在探究新知之前,我打破数学教学常规,进行学科整合,借助语文学科与数学学科之间的联系为切入点,由文字构成规律引发学生数学思维火花,把文字构成规律变成数字,进行铺垫。引发学生探究数学的欲望,极大调动学生学习的兴趣。接着设疑引发学生提出问题:关于倒数你想知道些什么?学生提出的问题是:什么是倒数?倒数的意义是什么?倒数有什么特点?学生在探究新知识的同时,能够自己举一些倒数的例子,提出自己的问题,让学生自己发现倒数的一些特点:每组中的两个数相乘的积是1;每组中的两个数的分子和分母的位置互相颠倒;每组中的两个数是相互依存的关系,不能孤立。依据倒数的特点让学生自己举例验证以上发现是否正确。
在争论数字0和1的倒数问题时,我创设情景境,通过两个卡通人物(明明、红红)发生争论 DD0和1都有倒数,0和1都没有倒数,课堂上学生引起了较大的争议,学生没有从分数的角度去发现0不能作为分数的分母,所以产生了0有倒数的`念头,再次的小组辩论。得出0不能作除数、0不能作分母。0没有倒数的结论。而1这个数字学生还是会发现1的倒数就是一分之一,也就是1。在教学求倒数的方法时,学生也能根据已学的知识自主解决,老师只是作为辅助,学生自行总结求倒数的法。但是整数到底有没有倒数?整数怎么样来求倒数?要怎么样把一个整数看成是分母是1的分数,再调换它们的位置。这样开放性题目,学生要经过小组合作才可以填出来,没有办法独立思考。所以,我觉得以后的内容就应该多出一些具有挑战性的题目,以帮助学生更好地理解新知识的应用。
一、揭示课题
师:在我们小学语文中学过许多多音字,大家看这一个词该怎么读?(板书:倒数)
生:(窃窃在读)
师:读给老师听一听
生(齐):倒数(dào shù)
师:真是老师的弟子,心有灵犀,跟老师的读法一模一样,怎么没读成倒数(dào shǔ)呢?
生:咱们学的数学,肯定与数有关,怎么会读成dào shǔ呢?
师:大家同意这种解释吗?
生:同意
师:刚才这个孩子说的很好,倒数肯定跟数有关,大家回忆一下,目前为止学过哪些数?
生:整数、自然数
生:不对,整数包括自然数,还有分数、小数
师:也就是说三种数,整数、分数、小数,同意吗?
生:同意
师:(板书:整数、分数、小数)
师:谁能举几个整数的例子?
生:3,5,100,99
师:很好,还有吗?数字能不能大点儿?
生:999
师:很好,这个数字我喜欢
生:1688
师:一路发发,好,我喜欢,写上。能不能再小点?
生:1
师:小棒1,最基础的数字,写上。还有吗?还有一个最不起眼的数字(老师手势表示)。
生(齐):0
师:对吗,怎么把这个忘了?写上。
师:谁能举几个分数的例子?
生:2(1)、10(3)、8(7)……
师:很好,这些都是真分数,能不能举些假分数?
生:3(5)、99(100)……
师:噢,能不能再举一些样子不一样的呢?
生(抢):应该是带分数了。
师(竖起大拇指):真棒!
生:12(1)、35(2)……
(学生举例的过程中老师选一些有代表性的板书)
师:好了,该举小数了?
生:0.3、0.8……
师:这些是纯小数,能举带小数吗?
生:1.5、3.6……
(同样,老师选一些有代表性的板书)
师:好了,现在咱们步入正题,这节课咱们一起来研究“倒数”。(题目补充完整:倒数的认识)
二、铺垫新知
师:看到这个课题,你想说点什么?
生:倒数是一种什么样的数?它是怎么倒过来的?
生:到底什么是倒数?它和以前学过的数有什么区别?
师:你们两个的意思也就是说想知道什么是倒数?(板书:倒数的意义)大家还想知道什么?
生:学倒数有什么用途?
师:很好,还有吗?
生:倒数能求吗?能运算吗?
师:也就是怎样求倒数(板书:求倒数)
三、探究新知
(一)、倒数的意义
1、自学课本
师:请同学们自学24页例1,看看什么样的数是倒数呢?倒数的意义课本上都有,我们一看都知道。重要的是我们在学习中要有自己的发现。
2、初步探究
师:谁能举例说一说是什么样的数是倒数呢?
生:乘积是1的两个数互为倒数,比如8(3)×3(8)=1,它们的积是1,因此8(3)和3(8)都是倒数。
师:噢,有道理,我想问一下“互为”是什么意思呢?
生:互相称为。
师:怎么理解“互为倒数”呢?
生:沉默
师:举个例子吧,杜欣莹请起立(老师走到学生跟前),咱俩握握手,你是我的小朋友,我是你的大朋友,咱们两个互为朋友!同学们想一想,能不能单独地说:“杜欣莹是朋友,老师是朋友”?
生:不能!只能说“谁是谁的朋友”!我懂了!不能说8(3)、3(8)是倒数,只能说8(3)是3(8)的倒数,3(8)是8(3)的倒数!
生:老师,能不能说8(3)、3(8)互为倒数呢?
生:能!老师和杜欣莹互为朋友,8(3)和3(8)怎么能不互为倒数呢?
师:说的太好了,有两种说法来叙述倒数,一种是×和×互为倒数,另一种是×是×的倒数,不能单独的说×是倒数。同桌互相说一说例1中剩余的3个式子。
3、深入剖析
师:理解了“互为倒数”的意义,请看下面几题的说法对吗?为什么?
(1)4(3)+4(1)=1,所以4(3)和4(1)互为倒数。
生:错,互为倒数的两个数必须是积为1,而不是和为1。
师:(2)2(1)×3(4)×2(3)=1,所以2(1)、3(4)、2(3)互为倒数。
生1:似乎对呀!
生2:不对,互为倒数的必须是两个数,而不是三个数。
师:同学们,咱们分析一下,倒数这个概念中,重点的部分是什么呢?
生1:互为
生2:乘积是1
3:还有“两个数”
师:好,现在咱们已经深刻认识了倒数,那同学们再观察一下,例1中互为倒数的每一组都有什么特点?
生:分子、分母颠倒了位置,怪不得叫倒数呢!
(二)、倒数的求法
1、分数的倒数
师:那现在咱们能不能找到一个数的倒数呢?看黑板上的三类数,整数、分数和小数,哪种数的倒数最好找呢?
生(齐):分数
师:咱们就从最简单的开始吧!先看分数2(1)、10(3)、8(7),谁能说一下他们的倒数。
生1:很简单,分子、分母倒过来即可,分别是1(2)、3(10)、7(8)
生2:错,2(1)的倒数应为2。
师:12(1),35(2)的倒数又是多少呢?这个有点难,谁来说呢?
生1:老师,简单!分别为11(2),32(5)
生2:似乎不对呀!
生3:对!分子、分母分别颠倒了位置
生4:不对,老师你看它们的乘积不是1!
生(齐,恍然大悟):是的,不对!积不是1
师:孩子们,你们真棒!找到问题的关键了!那带分数的倒数我们该怎么找呢?能不能先把它们的样子先变一下呢?
生:老师,应该先把带分数化为假分数,然后分子、分母颠倒位置就行了!
师:这个发现太好了!孩子们用这个方法试试吧!
2、整数的倒数
师:分数的倒数大家会求了,整数的倒数又该怎样求呢?它没有分子、分母怎么办呢?
生:老师,可不可以把它先变成分数,然后分子分母颠倒位置。
师:这个想法不错!可怎么变呢?
生:所有的整数都可以看作分母是1的分数,这样不就行了吗?
师:说的太好了!大家同意吗?同桌互相说一说3、5、100、99、999、1688的倒数。
师:1的倒数是几呢?
生1:1可以看作是1(1),颠倒过来还是1(1)。
生2:不对,1(1)是个假分数,应化为整数1。
生3:因为1×1=1,所以1的倒数还是1。
师:所以1的倒数还是它本身。那0的倒数呢?
生:和1一样,0的倒数是0。
师:噢,是吗?再想想
生:0好像没有倒数。你看,0可以看作1(0),分子、分母颠倒成0(1),0作分母失去意义,不存在呀!
生:(掌声)
师:你的想法很有创意!握握手吧!
生:我的想法比他的好,因为找不到任何一个数和0相乘得1,这样0就没有倒数了!
生:(掌声)
师:我的弟子真了不起,王江浩和任南旭分别从两种角度分析0没有倒数,咱们就把这个发现叫“江南发现”好吧!
生:好!挺有诗意的!
3、小数的倒数
师:该攻破最难的堡垒了,求小数的倒数了!我先做一个,大家看对吗?0.3的倒数是3.0
生:(哄笑)错了!
师:错在哪儿?
生1:老师,你看0.3×3.0根本不等于1,怎么会是它的倒数呢?
生2:老师,你是不是糊涂了,是分子、分母交换位置,不是小数点左右交换位置!
师:(故作迷茫)那怎么办呢?
生:先把小数化为分数不就得了!
生:(齐鼓掌)
师:真是青出于蓝胜于蓝呀!孩子们咱们就用丁欣然发现的方法把这几个小数的倒数求出来吧!
四、综合练习
1、3(2)×( )=4×( )=9(1)×( )=0.75×( )=1 (学生说,老师写答案)
师:你有发现吗?
生:这道题其实就是求3(2)、4、9(1)、0.75的倒数,你看它们的积都是1。
师:现在擦去1,你认为有几种填法?
生:还可以让它们的积等于2,3……,所以有无数种填法。
师:但是根据倒数的意义来填是最容易考虑的,是吧?
2、一个数与它倒数的和是99(1),这个数是( )
生:这个数是9
师:为什么呢?
生:因为9的倒数是9(1),它们的和是99(1)
生2:那这个数也可是9(1)呀,因为倒数“互为”的吗!
师:是的,这个数应该是9或9(1) ,我们考虑问题还需要全面些
3、填符或或数字
①10÷2○10×2(1) ②9÷3○9×3(1)
(学生说,老师写)
③20÷( )=20×( )
生:20÷(2)=20×2(1) 生:20÷4=20×4(1)
……
4、总结延伸
出示:1÷3(2)○1×2(3)
师:你猜一下,中间能划等号吗?(生:能)那究竟为什么呢?我们下一节课再作研究,好吗?(生:好)
师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!谢谢大家,下课!
活动目标:
1.启发幼儿通过自身的尝试操作,发现10以内数的排列顺序,知道什么是顺数和倒数。
2.感知顺数逐个多1、倒数逐个少1的正逆关系,了解不同的数数方法。
3.培养幼儿的尝试精神,发展幼儿思维的敏捷性、逻辑性。
活动过程:
一、老师组织幼儿安静的坐好。
二、激趣导入,引发幼儿兴趣。
1.今天,老师给小朋友们带来了一些漂亮的小皮球,我们一起来数一数吧。(出示出示ppt课件观察)。
2.边看ppt课件边数数,从1数到10,练习顺数。
3.边看ppt课件边数数,从10数到1,练习倒数。
4.教师小结,引出顺数和倒数。
三、出示ppt课件,引导幼儿学习顺数,倒数的方法。
1.提问:图上是谁?(小猴子)它喜欢吃什么啊?
2.数一数:盘子里一共有几个桃子?
3.小猴子开始吃桃子了,我们来看一看小猴子吃了几个桃子?还剩下几个桃子?
四、智慧屋:比较顺数与倒数的异同。
1.小猪的家在第几层?小熊的家在第几层?小猫的家在第几层?小白兔的家在第几层?小猪的.家在第几层?小狗的家在第几层?小猴子的家在第几层?
2.小猴上楼时该怎么数?小猴下楼时又该怎么数?
3.小结:10以内的顺数和倒数。
五、生活中的顺数和倒数。
1.在日常生活中,你看到过有哪些事例是顺数,那些事例是倒数呢?
2.幼儿联系经验说说顺数、倒数在生活中的应用。
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:
①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
推荐专题: 倒数的认识学情分析