首页 > 更多文库 > 1号文库 > 详情页

苏教版五年级数学第一单元《认识负数》教学设计(合集)

2024-08-05 17:41:10

千文网小编为你整理了多篇相关的《苏教版五年级数学第一单元《认识负数》教学设计(合集)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《苏教版五年级数学第一单元《认识负数》教学设计(合集)》。

第一篇:小学数学六年级下学期《认识负数》教案

教学内容:

第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

教学目标:

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

教学重点:

负数的意义和负数的读法与写法。

教学难点:

理解0既不是正数,也不是负数。

教具准备:

多媒体课件

教学方法:

教师讲授、合作交流

教学过程:

一、复习导入

提出问题:举例说明我们学过了哪些数?

教师小结:为了实际生活的需要,在数物体个数时,1、2、3出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

二、创设情境、学习新知

1.教学例1。

(1)出示:中央电视台天气预报的一个场面,主持人说:哈尔滨零下6至3摄氏度,重庆6至8摄氏度

同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲哈尔滨零下6至3度这句话是什么意思吗?

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的.不同呢?

教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有-号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第87页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。(进一步认识正数和负数)

第二篇:年级第一单元《认识负数》易错题

《认识负数》一课是苏教版第九册第一单元“生活中的负数”的第一课时,是在学生已经认识了自然数,并初步认识了分数、小数的基础上,结合熟悉的生活情境,唤起已有的生活经验,初步认识负数。因此,在教学设计时充分考虑应用学生已有的知识和生活经验,创设与学生生活素材密切相关的数学情境,让他们亲历知识形成的过程,力求做到“动静结合,张驰有序”:教学片段:记录相反意义的量。(1)听清信息,独立思考,选择自己喜欢的方式,把听到的信息准确、简洁的表示出来。关键是让别人一眼就能明白你表示的意思。足球比赛转学情况帐目结算上半场四年级 三月份 下半场 五年级 四月份 (2)汇报:第一种:用文字表示第二种:用笑脸图、哭脸图表示师:你的符号你明白,我的我明白,数学语言是要交流的,怎么办?生:要统一。第三种:用+2、-2表示师:和数学家表达的一样,这种表达有什么好处?生:简明、清楚(3)认识正、负数。师:你知道像上面的数叫什么?(正数)+2怎么读?生:读加二。师导读:正二师:像下面的数呢?(负数)板书―2怎么读?生:负二(4)读上面各数,并板书在黑板上。师:加号和减号和过去的意义不同,加号叫做正号,减号叫做负号。抢读。-100、+6.8、-1.8、36(同时贴于黑板相应位置)师:为了简写可写36。如果去掉正号,这些数你们熟悉吗?是我们过去学的数。负数前的负号可以去掉吗?2、介绍负数的历史 师介绍负数历史。听完介绍后你有什么感受?3、正数、负数、0 (1)四个城市气温图:哈尔滨:-15~3℃ 北京:-5~5℃ 上海:0~8℃ 海口:12~20℃有负数吗?读出来。北京-5℃和5℃一样吗?零上的温度用什么表示?零下的温度用什么表示?0呢?师:0正好是零上温度和零下温度的分界点。 (2)温度计。(教具:表示水银的位置可挪动)师:每格代表1℃,请生拔出5℃。拔-5℃。为什么拔不出来?要先找到什么温度?生:先找到0℃,这是分界点。师:将温度计上的数揭开,越往上温度?生:高再拿一个温度计请该生再拔-5℃。拔-15℃比较两个温度(-5℃和-15℃)哪个更冷?怎么能说明-15℃比-5℃更冷了?生:温度计上有表示生2:-15℃在-5℃下面。师:用你的动作和表情告诉我-15℃时的感觉。 我国新疆地区最冷时温度达到-40℃,大概在温度计的哪儿?生:比划。师:你能说几个正数和负数吗?生:-10、-11师:一对一对说。生1:+10、-20师:说得完吗?用省略号表示。所有正数和0比,有什么关系? 所有负数和0比,有什么关系?(板书:负数<0<正数)用一个圈把所有正数圈出来,用一个圈把所有的负数圈出来。生圈出了板书的正数和负数。生:不同意,因为还有很多正、负数。要把省略号圈进去。师:0,正数不要,负数不要。怎么办?生1;0是分界点。六人小组讨论:0算正数吗?算负数吗?汇报,生1:0算是自然数。生2:0是正负数。生3:它一个不是,是特殊的数。师:正数比0?(大)负数比0?(小)0比0小吗?(0不是)0既不是正数,也不是负数。是分界点。4、生活中的应用(1)图:叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?(左侧是(2)海平面图。莲花峰比海平面高+1864米,吐鲁番盆地比海平面低155米,记作( )(3)下图每格表示1米,小华刚开始的位置在0处。数轴图:左-8 右+8 西 东

第三篇:年级第一单元《认识负数》易错题

教学内容:

苏教版国标本五年级上册《认识负数》第一课时

教学目标:

1、在具体情境中认识负数,感受负数的实际意义;会正确读写正、负数;初步感知正、负数可以表示两种相反的关系;知道负数都小于零,正数都大于零。

2、体验生活与数学的联系,会用正负数的知识解释生活现象。

教学过程:

一、创设情境,激趣引入

(多媒体出示沈阳大雪时的一幅照片)

师:这是沈阳大雪时的一幅照片。猜猜看,这时的气温可能是多少度?(指名口答)

(评:以温度引入负数,符合学生的认知特点。“猜温度”既能服务于本节课的教学重点,又有利于激发学生的学习热情。)

二、借助经验,自主探究

1、 认识温度计

师:在日常生活中,人们往往借助温度计来测量温度。(多媒体出示温度计图)你了解温度计吗?把你了解的情况和大家交流一下,好吗?

小结:温度计上有两种计量单位:一种是摄氏度,一种是华氏度。我国统一使用摄氏度。

师:[多媒体出示标有沈阳温度读数(零下20℃)的温度计]谁能读出图中沈阳的温度?说一说你是怎样看出来的?(指名口答)

师:(多媒体依次出示读数为零下22℃、零下18℃的温度计图)这时的温度又是多少呢?你能说说是怎样看出来的吗?

[评:认识温度计是本环节的教学要点,而正确地读出温度计所示的零下温度又是本节课的教学难点。通过零下20℃、零下22℃、零下18℃的对比练习,既突出教学要点,又能有效地突破教学难点。]

2、教学例1。

(1)教学正、负数读写法

谈话:同学们,咱们中国幅员辽阔,南方和北方在气温上有很大差异。当沈阳还是千里冰封的世界时,南京和海口的气温又是多少呢?咱们一起来看一下。(多媒体出示三幅温度计图:沈阳零下20℃;南京0℃;海口零上20℃)

师:从这几幅图中,你能看出南京和海口的气温吗?你能说说怎样看出来的吗?你还能得到哪些重要的数学信息?(小组讨论、指名汇报交流。)

师:沈阳和海口的气温一样吗?为什么?

你能用自己喜欢的方式表示这两个不同的温度吗?(学生记录后,展示、交流评价。)

师:数学语言需要交流,交流就要符号统一。(展示并板书-20℃、+20℃)这是科学家规定的记录方法。

讲解:“-”是负号,“+”是正号,要写得小一点。-20℃读作负二十摄氏度; +20℃读作正二十摄氏度。+20℃也可以简单记作20℃。

(2)练一练。

(多媒体出示标有吐鲁番盆地某一天最低气温和最高气温的温度计图:零下9℃、零上27℃)

师:你能用刚才的方法把它们记录下来吗?[指名反馈,教师揭示

(板书):-9℃、27℃]

[评:通过练一练,既可以使学生更为准确、熟练地掌握零上温度和零下温度的表示方法,又为引入例2起到过渡作用。]

3、教学例2。

(1)出示例2。

师:吐鲁番盆地的早晚温差非常大。人们常这样来形容:“早穿棉袄午穿纱、围着火炉吃西瓜”。这与它的地理特征有很大关系。(出示例2:珠穆朗玛峰比海平面高8844米;吐鲁番盆地比海平面低155米。)

(2)教师讲解“海拔”的含义。

(3)你能用以上的方法表示出这两个海拔高度吗?(学生独立完成后,指名口答。板书:8844米、-155米)

(4)练一练。

(多媒体出示:读一读下面的海拔高度,说一说分别是高于海平面还是低于海平面?

黑海海拔高度是-28米。

马里亚纳海沟最深处的海拔是-11034米。

(评:两道例题两个层次,例1通过让学生观察、讨论、交流等数学活动,初步感知负数,并掌握负数的表示方法;例2教师则完全放手,让学生根据例1中温度的表示方法,类推出海拔的表示方法。教学方法一详一略,一扶一放。)

三、抽象概括,沟通联系。

1、揭示概念。

师(指板书):这里有许多数量,如果把它们的单位名称去掉,就得到一个个的数。你能把这些数分分类吗?

师:像-20、-9、-155这样的数都是负数。你还能说出几个负数吗?能说得完吗?

像+20、27、8844这样的数都是正数。你还能说出几个正数吗?能说得完吗?

揭示课题(板书)。

2、介绍负数产生的历史。

(多媒体出示教科书第九页“你知道吗?”)

3、认识0与正、负数的关系。

师:你认为0是正数还是负数呢?理由是什么?(小组讨论、指名汇报结果)

0与负数比、0与正数比,大小有什么关系?(指名回答)

[评:揭示正负数时,让学生经历 “具体――抽象(由具体数量抽象出数)”的过程,符合儿童认知规律;让学生列举正、负数,可以初步感知正数的个数和负数的个数都是无限的。]

四、巩固练习,应用拓展。

1、选择合适的温度连一连。(多媒体出示教科书练习一第四题)

2、你知道这些温度吗?读一读。(教科书练习一第五题)

3、你能在温度计上表示出这些温度吗?(多媒体出示地图,闪烁温度:石家庄5℃、长春10℃、杭州5℃、桂林10℃)

(让学生在练习纸上完成后,比一比这几个城市温度的高低。)

4、下面是小明的一则日记。

2007年7月18日 晴

今天天气很热,大约有10℃。好多爱美的女士为了避暑都打上了遮阳伞。

我跟着爸爸来到他上班的冷食加工厂,一进加工车间,感到凉飕飕的,估计温度大概有-15℃。爸爸打开冷柜,马上有一股寒气袭来,我猜冰柜里的温度大约有8、9℃吧。

回来的路上,碰到了同学,我们就聊开了。洪军说:前几天,他们全家到泰山旅游,爬上了海拔1545米的山顶;晓玲说:他们全家去了连云港,听说连云港海的最低处是海拔34米呢!

……

这则日记中有些数据不符合实际情况,你能找出来吗?你知道怎么改吗?

[评:以日记的形式展示数学内容,既贴近生活、新颖有趣,又有利于联系实际、培养数感。]

五、全课总结。

师:这节课我们一起认识了负数。你有哪些收获,给大家分享,好吗?

六、拓展延伸。

让学生课外注意观察身边的事物,搜集一些可以用负数表示的数量。

总评:

课程标准提出:人人学有价值的数学,人人都能获得必需的数学。本节课体现了如下特点:

简约。紧紧围绕教学目标来确定教学主线。让学生在具体情境中认识负数,感受负数的实际意义;在引导学生创造的基础上,教学正、负数的表示方法;让学生联系生活感知正数和负数意义相反、相互依存的关系;……使人感到简洁、明快。

贴切。数学知识源于生活经验。老师注意寻找贴近学生生活的数学素材,精心设计符合学生年龄特点的数学活动。使得学生乐学、深思,真正成为课堂的主人。

课始,老师让学生猜测沈阳大雪时的温度;接着自然地将温度计引出,并让学生自主交流温度计的有关知识;……既可以消除学生对教学内容的陌生感,同时也能激发学生的求知欲,使得学生积极参与数学活动。使人感到真切、自然。

充实。数学重在思考。认识负数时,借助温度计和海拔,引导学生通过看一看、猜一猜、说一说、议一议等数学活动,从不同的角度感受负数、理解负数,并用所学知识解决生活中的实际问题。从而让学生经历了“感知――探索――建构――应用”的认知过程,有利于增强认识,落实目标。使人感到实在、高效。

和谐。关注学生学习过程评价。老师注意给学生提供广阔的思维空间,鼓励学生尽情地表达自己的意见与想法。例如:“你了解温度计吗?把你了解的情况和大家交流一下,好吗?”、 “你能说说是怎样看出来的吗?”、“ 你能用自己喜欢的方式表示吗?”、“你有哪些收获,给大家分享,好吗?”……有利于学生自主参与知识的形成过程,从而形成平等、自由、和谐的学习氛围。使人感到轻松、流畅 。

第四篇:小学数学六年级下学期《认识负数》教案

教材分析

在学生认识了自然数、分数和小数的基础上认识正、负数,所以正、负数的认识是学生数概念的进一步拓展,也是学生学习有理数的启蒙阶段。

学情分析

之前的数概念学习,学生较多的是在具象意义上认数,分数虽然是在抽象意义上认数,但借助整体和部分关系,学生理解整体与部分关系用分数表示相对还比较容易把握,而正、负数的认识则属于更高的抽象意义上的认知,所以学生存在一定的学习困难。

教学目标

1、经历正、负数的产生过程,感受数范围不断形成和扩张的生成发展过程。

2、结合现实生活理解正、负数的意义,会用0表示参照标准,理解0既不是正数也不是负数;会用正、负数表示相反意义的量;掌握正、负数的读写法。

3、结合实际情境经历数轴的产生过程,在数轴上理解正数比0大、负数比0小。

教学重点

结合现实生活理解正、负数的意义,会用0表示参照标准,理解0既不是正数也不是负数;会用正、负数表示相反意义的量。

教学难点

理解0的含义。

教学方法

动手操作、小组合作学习

教学过程

设计思路

一、联系生活、激发兴趣

材料感知,聚类分析,发现生活中的参照标准及其相反意义的量。

这些都是具有相反意义的数量。以第①个为例,相对“始发站一个乘客也没有”为标准进行比较,相反意义的量是“上来8名”和“下去6名”。你能像这样说一说其它情境中都是相对什么标准来说的,两个数量有什么联系吗?

二、联系生活并用正、负数表示。

开始同学们阅读了一些相反意义的量,你能用“0”来表示参照标准,用正、负数来表示参照标准两端相反意义的量吗?

以前计数时0表示没有,测量时0表示起点,今天我们学习正负数中0又用来表示参照标准,0的作用真大啊。

珠穆朗玛峰高于海平面的海拔高度约为8844.43米,吐鲁番盆地低于海平面约155米,这里以海平面为基准,是不是也产生了相反意义的量?怎样用正、负数来表示?

暑假里绵阳的最高气温达到了38℃,和这么热的高温恰恰相反,珠穆朗玛峰峰顶的温度由于海拔高度的关系却只有-38℃,-38℃在-20℃的上面还是下面,比-20℃高还是低?

你还能列举出生活中用正、负数来表示的例子吗?举例时想一想我们可以把什么看作0,什么为正,什么为负?

小结:生活中凡是相对某一参照标准具有相反意义的量都可以用正、负数来表示。

三、正、负数的应用

1、结合班级中的正、负数生成数轴。

师:同学们找找,我们班级里有没有可以用正、负数表示的地方呢?

师:如果以“O”同学为参照标准,用0表示,约定右边为正,左边为负,那同学们的.位置是不是也产生了正、负数?右边A同学的位置可以用什么数表示?左边B同学的位置呢?

小结:从0向右位置为+1,+2,+3的同学离0越来越远,表示的数就越来越大。相反,从0向左位置为-1,-2,-3的同学离0越来越远,表示的数就越来越小。

师:如果仍以“O”同学为参照标准,用0表示,约定向前为正,向后为负,那前边C同学的位置可以用什么数表示?后边D同学的位置呢?

师:我们再以“O”同学为参照标准,用0表示,约定斜前为正,斜后为负,E、F同学的位置用什么数表示?

小结:我们把刚才横行、竖列、斜行的同学们的位置分别看做一条直线,参照标准用0表示,也就是数轴的“原点”;规定向东、向北、向右、向前为正,也就是数轴的正方向,画上箭头;那么向西、向南、向左、向后就可以用负数来表示,每个人的位置都可以在直线上用正、负数表示,每两个同学间的距离一样,这个距离也就是数轴的单位长度。

师:比较一下,相对0而言,是-2更接近于0,还是+2更接近于0?

四、总结:正数和负数在0的两侧,它们具有相反关系,这一特点也在生活中被广泛运用,同学们课后可以再去找一找,体会一下。

感受数学来源于生活,感受负数的意义。

体会负数表示相反意义的量。

从直观形象的温度计出发,帮助学生理解。

结合数轴、直观形象的理解负数的意义。

在总结中提升,加深对知识的理解和应用。

第五篇:年级第一单元《认识负数》易错题

【例1】

地面以上1层记作+1层,地面以下1层记作-1层,从+2层下降了9层,所到的这一层应该记作( )层。

【错误原因分析】

大部分学生认为是“-7”。这部分学生的思考过程是:一共要下降9层,地面以上有2层,9-2=7,那地面以下就要下降7层,所以是“-7”。

【解题思路点拨】

因为地面上从“+2”层下降到“+1”层,只下降了一层,从“+1”层下降一层,就到了“-1”层,中间没有“0层”。这样就可以通过列举的方法求出答案。

【解题过程】

+2→+1→-1→-2→-3→-4→-5→-6→-7→-8。

【变式矫正】

地面以上1层记作+1层,地面以下1层记作-1层,从-5层上升了8层,所到的这一层应该记作( )层。

【例2】

与标准体重比,小明重2千克, 记作:+2千克;小华比小明轻5千克,记作:( -5 )千克。

【错误原因分析】没有与标准体重相比, 错误地将小明体重看作标准体重.

【解题思路点拨】小明比标准体重重2千克.小华和标准体重比,相差多少呢?画图试一试找出标准体重的位置就容易了。

【解题过程】小明比标准体重重2千克, 标准体重就比小明体重轻2千克, 小华比小明轻5千克,小华体重就比标准体重轻3千克. 记作:( -3 )千克。

【变式矫正】

1.一幢大楼18层,地面以下有2层。地面以上第3层记作:+3层,地面以下第1层记作:( )层。老师现在-2层处,上升了4层,到了地面以上第 ( )层。

2.比90分多5分,记作:+5分。那么( )分可以记作:-4分。

3.“净含量:10±1kg”,表示合格重量最多是 ( )kg,最少是( )kg。

4.如果小军跳绳125下,成绩记作+5下;那么小明跳绳116下,成绩应记作( ) 下;小乐跳绳成绩记作0下,表示小乐跳绳( ) 下。

推荐专题:

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号