首页 > 报告总结 > 实习报告 > 详情页

铁道信号小学期实习报告共5则

2022-01-13 00:17:29

千文网小编为你整理了多篇相关的《铁道信号小学期实习报告共5则》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《铁道信号小学期实习报告共5则》。

第一篇:铁道通信信号专业

一、铁路通信信号专业的性质和特点

铁路信号技术已经历了一百多年的发展,形成了今天的现代铁路信号系统,铁路信号技术在进入信息时代的今天,已逐步与通信走向一体化。

铁路通信信号是各种现代信息技术在铁路运输工程中的具体应用,是信息学科与铁路运输学科的交叉学科。铁路信号和通信已由过去的铁路运输的“眼睛”和“耳朵”变成了铁路的“中枢神经”,发挥着越来越重要的作用。

二、铁路通信信号专业的地位

铁路是国民经济的大动脉,是提高人民生活水平和加强国防建设的重要条件之一。在现代铁路运输系统中,由铁路通信信号构成的信息与控制系统,与铁路固定设备(线路、桥、隧)和移动设备(机车、车辆)构成了铁路运输系统三个不可分割的技术基础,在铁路运输中占有非常重要的地位,它的发展水平已成为铁路现代化的重要标志之一。

三、铁路通信信号专业的作用1.保证行车安全

铁路信号系统是为了保证运输安全而诞生和发展的。系统的第一使命是保证行车安全,没有铁路信号,也就没有铁路运输的安全。

(1)避免两列或多列列车同时占用一个空间造成的冲突。(2)避免由于道岔位置不正确而导致列车驶入错误线而造成冲撞。

(3)避免列车速度超过了线路限制速度引起颠覆事故。总之,提高运输效率。2.提高运输效率

铁道信号系统对提高列车密度和运输能力具有重要作用。

(1)自动闭塞技术,使得组织追踪运行成为可能,增加了列车密度。双线自动闭塞,按8min、7min、6min间隔计算,每昼夜平行运行能力,可由半自动闭塞的70对分别提高到180对、205对、240对,采用CTCS2级列控系统,追踪间隔缩短至3min。

(2)车站电气集中,电气集中与非集中联锁比较,咽喉通过能力可提高50%-80%,到发线通过能力可提高15%-20%。

(3)驼峰自动化编组场,可提高编解能力15%左右,使点线能力得到协调。3.改善劳动条件、提高服务质量

(1)为行车部门提高了劳动生产率,节省了大量行车人员。(2)减轻劳动强度与风险、减少人员伤亡。

(3)促进了旅客服务系统、货运查询系统等技术进步,可以向旅客提供有关到、发信息服务,为货主及时掌握货物达到时间提供极大方便。

4.铁路实现集中统一指挥的重要手段

(CTC、TDCS改变了调度员依靠一台电话、一张图、一支笔的传统手工方式组织行车的方式。)(1)编制行车计划。(2)临时运行图,调整运营计划。(3)监视沿线列车运行状况。(4)对各车站进路实行集中控制。主要研究领域:1.闭塞技术。2.联锁。3.编组自动化。4.调度指挥系统。

一、闭塞技术发展

为了提高运输能力,行车密度逐步增加,提出了安全行车间隔问题,产生了闭塞技术。1.1851年英国铁路用电报机实行闭塞制度。2.电话。3.电气路签。4.电气路牌闭塞。5.半自动闭塞。6.自动闭塞。7.准移动闭塞。8.移动闭塞。

二、联锁

在车站内有许多线路,以道岔连接着。根据道岔的不同位置而组成不同的进路,列车或车列是否能进入进路,是用信号机来指挥的。如果信号机显示的信号是指示列车或车列进入某一股道,而道岔的开通位置却是开通另一股道,这就有发生行车事故的危险。为了保证安全,就必须使信号机、进路和道岔三者之间有着一定相互制约关系,这种关系称为联锁。

1.1856年,J.萨克斯贝发明机械联锁机。2.机械槽口技术。3.电气衔铁技术。4.继电器联锁。5.计算机联锁。

三、编组站自动化

1.(1825年-1876年),平面调车阶段,利用牵出线或正线调车,人工扳道,手闸制动。

2.(1876年-1924年),简易驼峰调车阶段,德国于1876年修建世界上第一座简易驼峰,利用位能溜放车辆解体列车,编组场内仍为人工扳道,手闸制动。3.(1924年-1948年),机械化驼峰调车阶段。美国于1924年首先在设有驼峰的编组站上,使用车辆减速器(也称缓行器),控制车辆溜放速度。1925年,德国又首先实现驼峰道岔的集中控制,免除了人工扳道和手闸制动的繁重体力劳动。

4.(1948年至今),半自动和自动化驼峰调车阶段,1948年,美国第一个建成了半自动化驼峰,1956年在美国奇脱菲编组站建成第一个用数字计算机控制溜放速度的自动化驼峰。

5.编组站作业综合自动化已经成为人们不断改进和完善的目标。

四、调度指挥系统

1.1927年,美国铁路采用了调度集中控制装置,调度中心(调度员)能够实时掌握管辖区段范围内的列车动态并能够对信号设备进行集中控制、对列车运行直接指挥。

2.调度监督。3.传统CTC技术。

4.综合运输管理系统(如:COSMOS、ATOS等)。

课程体系设置分为四个方面:公共基础课程;专业基础课程;专业课程。

一、公共基础课程

大学英语,高等数学,线性代数,随机过程,概率论与统计分析,网络教育学习导航,计算机文化基础,毛泽东思想概论,邓小平理论与三个代表,马克思主义哲学原理。

二、专业基础课程

电路分析,模拟电子技术,数字电子技术,汇编语言程序设计,高级语言程序设计,微机接口技术,信号系统,计算机网络,数据库技术,铁道信号基础。

三、专业课程

车站信号控制,区间信号控制,铁路调度指挥系统,列车运行控制技术,可靠性理论,安全性理论与技术,现代铁路信号系统,铁路信息化理论,城市轨道交通信号系统,铁路专用通信。

一、社会对铁路通信信号专业人才的需求1.应用型

满足铁路运营部门的日常维护及工程建设单位与施工管理(主流需求)。2.工程型

满足铁路设计部门信号设计,满足铁路运营部门的技术管理,信号产品开发。3.研究型

国家根本利益需求,必需有一支铁路信号理论与核心技术的创新研究队伍。

二、网络教育学院铁路通信信号专业的人才培养目标

图4-1社会对铁路通信信号专业人才的需求

培养适应铁路、城市轨道交通建设需要、获得工程师基本训练的应用型技术人才。通过本专业的学习,毕业生掌握铁路信号技术的基础理论和专业知识,能够从事铁道信号领域的应用、维护和管理工作,在铁道信号及相关行业的单位中发挥技术骨干作用并具有一定创新精神的应用型人才。

1.1825年,铁路在英国诞生,人持信号旗骑马前行,引导列车前进。2.1832年,美国在纽卡斯尔-法兰西堂铁路线上开始使用球形固定信号装置。3.1841年英国人古利高里发明了安装在臂板式信号机。

4.1872年美国人W.鲁宾逊发明了轨道电路,开始了列车自动控制信号的新时代。5.由于地形和气候条件的影响,发明了机车信号设备。

6.为了防止由于司机失去警惕而发生危及列车运行安全,研制了列车自动停车ATS(AutomaticTrainStop)设备。

7.随着列车速度提高,特别是高速铁路的发展,为了克服列车超速而产生的颠覆事故,超速防护设备ATP得到发展。

8.列车运行自动控制系统已经应用于城市轨道交通系统。

因此,铁路信号已经从最初阶段提供“视力”的传统信号逐步演变成为一个列车闭环自动控制系统。

图5-1自动停车流程

图5-2区间信号机

图5-3轨道电路原理示意图

1851年英国铁路用电报机实行闭塞制度,区间信号技术经历了电话、电气路签、电气路牌闭塞,到后来的半自动闭塞、自动闭塞的发展历程,正在向准移动闭塞、移动闭塞技术发展。

从1856年,J.萨克斯贝发明机械联锁机开始,这种联锁技术经历了机械槽口技术、电气衔铁技术、安全型继电器技术时代,当前计算机联锁正在逐渐取代继电器联锁。1927年,美国铁路首先采用了调度集中控制装置,该装置使调度中心(调度员)能够实时掌握管辖区段范围内的列车动态并能够对信号设备进行集中控制、对列车运行直接指挥。

东日本铁路公司开发的综合运输管理系统COSMOS,在其管辖区域内对新干线网络进行运营控制和管理,此系统由运输计划、运行管理、站内作业管理、维修作业管理、车辆管理、设备管理、信息集中监视、电力系统控制等8个子系统组成。

二十世纪九十年代中期,我国铁道部提出了建设铁路运输调度指挥管理系统TDCS(DMIS),系统构成为部、局、车站三级网络结构。2003年,青藏铁路公司在西哈段建成了世界先进的分散自律调度集中系统(CTC)。

编组站调车控制系统大体经历了四个阶段:

一是铁路发展头50年(1825年~1876年)为平面调车阶段,利用牵出线或正线调车,人工扳道,手闸制动;

二是简易驼峰调车阶段(1876年~1924年),德国于1876年修建世界上第一座简易驼峰,利用位能溜放车辆解体列车,编组场内仍为人工扳道,手闸制动;

三是机械化驼峰调车阶段(1924年~1948年)。美国于1924年首先在设有驼峰的编组站上,使用车辆减速器(也称缓行器),控制车辆溜放速度。1925年,德国又首先实现驼峰道岔的集中控制,免除了人工扳道和手闸制动的繁重体力劳动;

四是半自动和自动化驼峰调车阶段(从1948年至今),1948年,美国第一个建成了半自动化驼峰,1956年在美国奇脱菲编组站建成第一个用数字计算机控制溜放速度的自动化驼峰。

随着铁路网的不断扩大,科学技术的迅速发展,编组站作业综合自动化已经成为人们不断改进和完善的目标。

图5-4铁路信号系统发展历程

一、功能与作用综合化

1.作用从单纯为了保证铁路行车安全扩展到提高铁路运输效率、减轻车务人员劳动强度,调度指挥等;2.联锁、闭塞、调度集中等信号设备由完成的单一功能向以铁路运输业务为主体的多功能综合系统发展,包括运输计划的实施和调整、行车和调车作业的指挥和控制、旅客导向和货主服务等;

3.从以车站联锁为中心向以列车运行控制系统为中心转化;

4.列车运行调度指挥从调度员-车站值班员-司机三级管理向由调度员直接控制移动体(列车)转化;

5.区间闭塞由固定闭塞方式向准移动闭塞方式转化;6.信号显示制式由速差式向速度式(目标距离)转化。

二、数字化、智能化

信号设备正在经历从继电技术为基础,发展为以计算机为主体的系统,如:计算机联锁正逐步替代电气集中继电器联锁,调度集中、列车自动控制系统和编组站自动控制系统都是以计算机为核心的设备。新一代信号设备功能强,自动化程度和适应能力高,具有智能和自诊断功能。

三、系统结构网络化

1.将各种分散的信号设备联成一个整体网络化结构。

2.最低层是现场的道岔设备、轨道电路、信号机、机车信号、通信的传输装置等。3.第二层是安全控制设备,包括车站联锁、列控装置、道口安全控制等。4.第三层是调度中心,包括调度集中等。

四、通信信号一体化

1.ERTMS/ETCS(欧洲铁路运输管理系统/欧洲列车控制系统)是欧盟支持的统一的行车控制系统,采用GSM—R作为传输系统,其成功应用进一步推动了铁路通信信号的技术进步,加快了实现铁路通信信号一体化的进程。

2.日本新干线在1995年成功开发和投入运行的COSMOS系统,则是通信信号一体化的又一个成功案例。该系统包含运输计划、运行管理、维护工作管理、设备管理、集中信息管理、电力系统控制、车辆管理、站内工作管理等8个子系统,以通信信号一体化技术,实现中心到车站各子系统的信息共享,并使系统达到很高的自动化水平。

一、铁路通信信号专业学习特点

1.本专业是自动化的一个分支,是以信息技术为基础的。因此,大部分课程与自动化专业相同,学生需要关心信息技术的最新成果。

2.本专业是信息学科与铁路运输学科的交叉学科,学生还要学习铁路运输相关理论与技术。

3.本专业注重应用技术的培养,学生除理论学习以外,必须加强动手能力的培养。4.本专业的学习强调理论联系实际,因此,学生要与现场实际联系起来学习,才能取得良好效果。

二、铁路通信信号专业学习要求1.具有较为扎实的数学基础。2.掌握铁道信号的基本理论和专业知识。

3.掌握电子技术、计算机应用技术知识,具备参与铁道信号系统相关软、硬件开发应用能力。

4.熟悉本专业实际应用技术,具有分析和解决本专业一般工程技术问题的能力。5.具有有效的沟通能力和良好的团队工作能力。

三、铁路通信信号专业学习方法

1.要有足够的时间和精力的投入。每周投入学习工作的时间最少要保持在50小时以上,最好在60小时左右。

2.要尽快摆脱“家庭作业心理”和“应考心理”,学习不是为了得到好分数,而是为了学到本领。

3.热情和执著。

4.理论与实践相结合,提高动手能力。

四、网络教育特点

网络教育E-Learning是一种基于计算机技术、网络技术和通信技术进行知识传输和知识学习的新型教育形式,网络教育代表了现代远程教育中先进技术和实用性的有效结合,是现代远程教育发展的主流模式。据统计,在美国,通过网络学习的人数正以每年300%以上的速度增长。1999年,已有超过7000万美国人通过E-Learning方式获得知识和工作技能、技巧,超过60%的企业通过E-Learning方式进行员工的培训和继续教育。

1.最大限度地利用各种资源

各种教育资源通过网络跨越了空间距离的限制,使学校的教育成为可以超出校园范围向更广泛的地区辐射的开放式教育。名牌学校更可以充分发挥自己的学科优势和教育资源优势,把最优秀的教师、最好的教学成果通过网络传播到四面八方,促进地区间的教育交流,使教育不发达地区的学生同样可以接受高水平的教育。

2.“五个任何”与主动学习

网络技术应用于远程教育,其显著特征是:任何人、在任何时间、任何地点、从任何章节开始、学习任何课程。网络教育便捷、灵活的“五个任何”,在学习模式上最直接体现了学习和主动学习的特点,充分满足了发展中的现代教育和终身教育的基本要求。

3.双向互动、实时全交互

教师与学生、学生与学生之间,通过网络进行全方位的交流,拉近了教师与学生的心理距离,增加教师与学生、学生与学生的交流机会和范围。并且通过计算机对学生提问的类型、人次等进行统计分析,可以使教师了解学生在学习中遇到的疑点、难点和主要问题,更加有针对性地指导学生,提高学习效率。

4.个性化教学

网络教育中,运用计算机网络所特有的信息数据库管理技术和双向交互功能,一方面,系统对每个网络学员的个性资料、学习过程和阶段情况等可以实现完整的系统跟踪记录,另一方面,教学和学习服务系统可根据系统记录的个人资料,针对不同学员提出个性化学习建议。网络教育为个性化教学提供了现实有效的实现途径和条件。5.自动化远程管理

计算机网络的数据库信息自动管理和远程互动处理功能,被同样应用于网络教育的教学管理中。远程学生的咨询、报名、交费、选课、查询、学籍管理、作业与考试管理等,都可以通过网络远程交互通讯的方式完成。因此,网络教育是最为完整、高效的现代远程教育方式。

网络教育E-Learning是一种基于计算机技术、网络技术和通信技术进行知识传输和知识学习的新型教育形式,网络教育代表了现代远程教育中先进技术和实用性的有效结合,是现代远程教育发展的主流模式。网络教育以学生自主学习和网上协同学习为主。学生应充分利用教课书与同步复习大纲加视频课堂对比进行预习、复习、考试。网络教育学院网络课程以学生为主体,充分体现成人、业余、自学为主的学习理念。网络学习的特点是:

(1)最大限度地利用各种资源;

(2)“五个任何”与主动学习(任何人、任何时间、任何地点、任何章节、任何课程);(3)双向互动、实时全交互;(4)个性化教学;(5)自动化远程管理。

本专业是自动化的一个分支,是以信息技术为基础的。因此,大部分课程与自动化专业相同,学生需要关心信息技术的最新成果。本专业是信息学科与铁路运输学科的交叉学科,学生还要学习铁路运输相关理论与技术。本专业注重应用技术的培养,学生除理论学习以外,必须加强动手能力的培养。本专业的学习强调理论联系实际,因此,学生要与现场实际联系起来学习,才能取得良好效果。

学院网络教学以异步教学为主,同步教学为辅,其教学活动包括以下几个环节:1.网络课件学习

课件学习是网络教学最基本的学习环节。

(1)学生在家中,使用电脑进行视频学习,或通过上网访问学院网站进行在线咨询。学生要有足够的时间和精力的投入。每周投入学习工作的时间最少要保持在50小时以上,最好在60小时左右。要尽快摆脱“家庭作业心理”和“应考心理”,学习不是为了得到好分数,而是为了学到本领。理论与实践相结合,努力提高动手能力。

(2)学生可以到所属学习中心,在学习中心的组织安排下,学习网络课件中的相关课程讲解。

2.网络交互答疑

学生在学习过程中遇到问题,可通过E-mail或网站课程学习界面的咨询电话等方式与教师进行交互答疑。

第二篇:桥梁认知实习报告

桥梁工程认知实习是此次实习周的第三个项目,实习时间从20××年09月03号至20××年09月04号。期间我们参观了圭塘河・浏阳河大桥、洪山庙大桥、三汊矶大桥和银盆岭大桥,每一座桥都有自己独特的特点,其各具特色的设计和造型真正让我们见识到了桥梁的千变万化。

第一天我们主要参观了圭塘河・浏阳河大桥和洪山庙大桥。天公不作美,一上午都在下雨且越下越大,这给我们的行程带来了很大的不便。冒着雨我们从桥上到桥底全方位的了解了桥的构造。圭塘河・浏阳河大桥

长沙市人民东路的圭塘河・浏阳河大桥是长沙首座高跨两条大河――圭塘河、浏阳河的大桥,总长为1900米。整条桥由两部分组成:跨圭塘河大桥与跨浏阳河大桥,其中圭塘河大桥为长沙首座下承式钢筋混凝土拱桥,其引桥为预应力三跨连续箱梁,全桥总长为155米,桥面宽为29米。浏阳河大桥为连续钢构桥,全桥总长为281米,桥面宽为29米。

刚一下车我们就马上来到了圭塘河大桥下,老师和我们讲起了有关桥梁的一些构造。桥梁是由桥梁上部结构和下部结构以及桥梁防护建筑物组成。桥梁上部结构由桥面、主梁和支座三部分组成。桥面是供车辆和行人直接走行的部分。主梁是桥梁主要承重结构,是桥梁上部结构的主体。支座是桥梁上部结构的支承部分。其作用是将上部结构的支承反力(包括竖向力、水平力)传递给桥梁墩台,并保证上部结构在荷载的作用和温度变化的影响下,具有设计要求的静力条件。支座有活动支座和固定支座两种,可用钢、橡胶或一定标号的钢筋混凝土制作。橡胶支座是一种新型支座,具有重量轻、高度低、构造简单、加工制造容易、用钢量少、成本低廉及安装方便等优点。按桥面置于上部结构的位置,桥梁上部结构可分为上承式、下承式(穿式或半穿式)和中承式。上承式、下承式和中承式的桥面分别置于上部结构的顶部、底部和中间。按上部结构主梁的结构形式或主要承重构件特征,桥梁上部结构可划分为板式梁、桁梁、拱桥、刚架(构)和斜腿刚构、斜拉桥、悬索桥等类型。在我们参观的桥中最大的不同可能是来自板式梁。

板式梁截面形式一般为矩形、I形、T形、□形和箱形,适用于中小跨度的简支梁及较大跨度的连续梁。常用的有混凝土板梁、钢板梁、结合梁、箱形梁和槽形梁。

1、混凝土板梁。包括普通钢筋混凝土梁及预应力混凝土梁。可采用工业化和机械化施工,砂石骨料一般可就地取材,用钢量小;维修工作简单;行车时噪声小;使用寿命长。对中小跨度的铁路桥梁,各国都基本上采用预应力混凝土梁。并实行标准化、系列化和预制装配施工。

2、钢板梁。其主要承重结构是两片I字形截面的板梁。上承板梁的构造较简单,钢料较省,可以整孔装运,整孔架设。下承板梁是将桥面布置在两片梁之间,列车在两片梁之间通过。一般将桥面搁置在纵梁上,使建筑高度(自轨底至梁底)大为缩小。下承板梁与上承板梁相比,结构复杂,用料较多,制造和施工都比较费工。但由于具有较小的建筑高度,适用于桥下净空受限制的地区。

3、结合梁。用钢筋混凝土道碴槽板和钢梁结合起来共同受力的桥跨结构。适用于曲线或陡坡地段的钢梁桥。

4、箱形梁。主梁截面为箱形结构。多用于较大跨度的连续梁桥。箱形梁的优点是抗扭刚度大,适用于曲线桥及承受较大偏心荷载的直线桥。箱形梁主要有预应力混凝土箱形连续梁和钢箱形梁。预应力混凝土箱形连续梁由于结构形式简洁,外形美观,抗扭性能好,偏载作用下的横向分布比其他形式的梁好,所以近年来很快得到推广。这种梁截面高度为适应内力的变化,通常沿跨度相应变化的,但也可采用等高度的。采用变高度梁适合用悬臂法施工,采用等高度梁适合用顶推法施工。钢箱形梁是随着高强度钢和焊接技术在桥梁上的应用以及薄壁结构计算理论的发展,于20世纪50年代以来发展起来的。钢箱形梁在一定跨度范围内比其他类型的梁式桥节省钢材可达10%~20%;抗扭刚度和横向刚度较大;安装、制造及养护较简易,因而采用较多。钢箱形梁的截面形式有矩形及梯形两类。箱形梁是闭口的薄壁结构,其应力及应变按薄壁结构理论计算。

5、槽形梁。这种梁的形状与半穿式梁相仿。其最大优点是底板薄,建筑高度低,最适用于立交桥,在满足桥下净空的要求下可以减少两端线路路堤的土方量。槽形梁可做成单线桥或双线桥,有简支梁,也有4~5孔的连续梁。两侧主梁有竖直的,也有斜的;有实心的,也有空心的。

桥梁的另外一个重要的组成部分为桥梁基础,桥梁基础的作用是把桥梁自重以及作用于桥梁上的各种荷载传至地基的建筑物。它和桥墩、桥台(见桥梁墩台)统称为桥梁下部结构。桥梁基础是埋于地层内的隐蔽建筑物。在设计和修建桥梁基础时,必须进行详细的现场调查和必要的钻探试验,并运用土力学和基础工程理论,选定基础类型,确定其承载能力,以防止桥梁在运营中发生病害桥梁基础按施工方法可分为明挖基础、桩基础、管柱基础和沉井基础四类。圭塘河大桥属于桩基础,桩基础是以桩体外壁与其周围土壤的摩擦力或桩尖的承载力来传力的基础。这种基础由承台和桩群组成。承台是连接桩群和桥墩的平台,多用钢筋混凝土建造。桩群是若干根埋入地基的桩,桩一般可分为预制桩和就地灌注桩两种。预制桩有木桩、钢桩、钢筋混凝土桩和预应力混凝土桩。木桩由于木材较缺,已较少采用。钢桩品种很多,常用的有型钢、钢管以及型钢组合桩。

浏阳河大桥为连续钢构桥,钢结构是现代建筑工程中较普通的结构形式之一钢结构体系具有自重轻、工厂化制造、安装快捷、施工周期短、抗震性能好、投资回收快、环境污染少等综合优势,与钢筋混凝土结构相比,更具有在“高、大、轻”三个方面发展的独特优势。

洪山庙大桥

浏阳河的洪山庙现在有两座洪山桥,一座是老的石桥,还有一座就是新建的斜拉索桥。不过百米之间,两座桥见证了长沙30年的沧桑巨变,也见证了传统和现代的完美和谐。

长沙市浏阳河洪山庙大桥南接四方坪立交,北岸即为洪山庙旅游区,毗邻机场高速公路和长沙世界之窗,是长沙市二环线上的一座特大桥,跨浏阳河,该桥由南北引桥和主桥组成,主桥结构形式为独塔无背索单索面斜拉桥,主跨206米,桥宽33.2米,桥面以上塔高138.8米,塔身倾斜58度,塔基采用扩大基础,基础平面尺寸为长31米,宽30米,基础高11米,基础下设25根2.0米深5米的抗滑桩。塔身为全预应力混凝土箱型结构,主梁为钢混叠合结构,钢结构部分母材均采用16Mnq。斜拉索采用直径7mm的高强低松弛镀锌钢丝经捆绞制成的成品索。南岸2#――3#墩辅助孔为预应力钢筋混凝土箱型梁,跨径30.305米。北岸主塔1#墩处异型块匝道梁体采用预应力钢筋混凝土箱型板梁,梁宽10米,高1.25米,单箱三室。在该桥的设计与施工过程中,大胆运用了一系列新技术,包括斜塔主梁平衡施工技术、梁塔双控应力调索施工技术、14米超长钢混结构大挑梁设计与施工、大型六角型钢箱梁的扭转设计与施工。这些技术的运用,突破了传统的设计与施工组织方案,丰富了国际桥梁建设理论,填补了我国桥梁建设史上的空白。

浏阳河洪山庙大桥是一座独塔无背索预应力钢筋混凝土斜拉桥,其结构新颖,构思独特,体现了结构与建筑艺术的完美统一,在体现建筑艺术的同时,使大桥的施工技术变得非常复杂。它的成功建设,开创了我国无背索斜塔斜拉桥施工的先河,为后续同类型桥梁施工提供了有力的借鉴,积累了宝贵的施工经验。浏阳河洪山庙大桥的成功建设,在理论和实践两个方面,将为我国和世界的桥梁事业发展作出新的贡献。

第二天我们去到了三汊矶大桥和湘江二桥――银盆岭大桥。这两座桥代表了长沙桥梁界的最高难度以及最高荣誉,在全国乃至世界都有很高的地位,

三汊矶大桥

三汊矶大桥全长1577米,其中主桥长732米,主跨长328米。该桥跨度达328米的自锚式悬索桥,在同类桥梁中居世界第一。湘江三汉矶大桥地处长沙市二环线的北环线,二环线路幅宽46米,6车道,设计车速为60公里/小时,道路环绕长沙城,通过互通式立交桥,将纵横城区的数十条城市主干道及107、319、长常高速等连在一起。大桥由主桥、塔柱、悬索吊杆、桥墩、桥面组成,主桥为钢箱梁。

悬索桥是以承受拉力的缆索或链索作为主要承重构件的桥梁,由悬索、索塔、锚碇、吊杆、桥面系等部分组成。悬索桥的主要承重构件是悬索,它主要承受拉力,一般用抗拉强度高的钢材(钢丝、钢绞线、钢缆等)制作。由于悬索桥可以充分利用材料的强度,并具有用料省、自重轻的特点,因此悬索桥在各种体系桥梁中的跨越能力最大,跨径可以达到1000米以上。按照桥面系的刚度大小,悬索桥可分为柔性悬索桥和刚性悬索桥。柔性悬索桥的桥面系一般不设加劲梁,因而刚度较小,在车辆荷载作用下,桥面将随悬索形状的改变而产生S形的变形,对行车不利,但它的构造简单,一般用作临时性桥梁。刚性悬索桥的桥面用加劲梁加强,刚度较大。加劲梁能同桥梁整体结构承受竖向荷载。除以上形式外,为增强悬索桥刚度,还可采用双链式悬索桥和斜吊杆式悬索桥等形式,但构造较复杂。

和拱肋相反,悬索的截面只承受拉力。简陋的只供人、畜行走用的悬索桥常把桥面直接铺在悬索上。通行现代交通工具的悬索桥则不行,为了保持桥面具有一定的平直度,是将桥面用吊索挂在悬索上。和拱桥不同的是,作为承重结构的拱肋是刚性的,而作为承重结构的悬索则是柔性的。为了避免在车辆驶过时,桥面随着悬索一起变形,现代悬索桥一般均设有刚性梁(又称加劲梁)。桥面铺在刚性梁上,刚性梁吊在悬索上。现代悬索桥的悬索一般均支承在两个塔柱上。塔顶设有支承悬索的鞍形支座。承受很大拉力的悬索的端部通过锚碇固定在地基中,个别也有固定在刚性梁的端部者,称为自锚式悬索桥。

悬索桥有自己的优缺点,相对于其它桥梁结构悬索桥可以使用比较少的物质来跨越比较长的距离。悬索桥可以造得比较高,容许船在下面通过,在造桥时没有必要在桥中心建立暂时的桥墩,因此悬索桥可以在比较深的或比较急的水流上建造。另外悬索桥比较灵活,因此它适合大风和地震区的需要,比较稳定的桥在这些地区必须更加坚固和沉重。但是悬索桥的坚固性不强,在大风情况下交通必须暂时被中断,而且悬索桥不宜作为重型铁路桥梁,除此之外悬索桥的塔架对地面施加非常大的力,因此假如地面本身比较软的话,塔架的地基必须非常大和相当昂贵。

三汊矶大桥是典型的自锚式悬索桥,自锚式悬索桥有以下的优点:

①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。

②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,也可做成单塔双跨的悬索桥。

③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。

④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。

⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。

⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。

自锚式悬索桥也不可避免地有其自身的缺点:

①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。

②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊索,因此需要搭建大量临时支架以安装加劲梁。所以自锚式悬索桥若跨径增大,其额外的施工费用就会增多。

③锚固区局部受力复杂。

④相对地锚式悬索桥而言,由于主缆非线性的影响,使得吊杆张拉时的施工控制更加复杂。

湘江二桥――银盆岭大桥

银盆岭大桥距湘江一桥橘子洲大桥约3.5公里,为“双塔单索面预应力混凝土斜拉桥”,位于长沙市城北,东起伍家岭,西至银盆岭,主桥总长1025米,大桥全长3616米,双向4车道,共有桥墩159个,总投资1.45亿元。北大桥1987年开始兴建,1990年12月建成竣工,是319国道上的一座重要枢纽桥梁。据悉,该桥建成之初还是中国跨度最大的双塔单索面斜拉桥。

斜拉桥是由梁、斜拉索及索塔三部分组成。其主要特点是利用索塔引出斜拉索悬吊梁跨。这种悬吊作用相当于在梁跨下面设置若干弹性中间支承。这样可以大大减小梁跨的弯矩,提高梁的跨越能力。组成斜拉桥的刚性梁、斜拉索和索塔有各种不同的形式。它们之间的组合方式亦有多种。斜拉索顺桥方向布置,常用的斜拉索形式有辐射形、竖琴形、扇形和星形。索塔的形式应根据拉索布置、主梁跨度以及桥面宽度等因素决定。常用的索塔形式在顺桥方向有柱形和A字形刚架两种。此外,尚有倒V形和倒Y形索塔。

斜拉桥的刚度与稳定性大于悬索桥,且不需用沉重的钢索锚桩。斜缆引到桥面板上的压力可以利用来施加预应力于混凝土桥面板上。因此,斜拉桥刚度大,抗风稳定性好。

两天的实习结束了,虽然我们不能彻底的弄明白桥梁的构造和原理,但是我们从中学到了很多的专业知识,我们了解到了中国桥梁的发展历史,知道了桥梁的一些基本构成,知道了例如伸缩缝、猫道等原来从来没有听到过的名次,同时知道了它们在桥梁之中所起到的重要作用。可以说一座桥就是无数个细小零件的结合体,任何的小物件的缺失都可能导致桥梁的毁坏。桥是沟通道路的枢纽,在建筑史上是不可缺少的。这次的实习让我知道建造一座桥的艰辛,我真诚的感谢那些桥梁设计者与施工者,是他们成就了建筑史上一个又一个的奇迹。除此之外,这次实习还使我了解了我们的专业,在以后的小专业取向上给了我很好的引导作用,与之前的建筑、隧道工程相比,我觉得桥梁工程更注重美观、实用,在精细程度上更加严谨,在方便人们出行的同时可以给大家带去很好的视觉享受。最后这次实习中我要感谢领队的老师,他们真的让我感到,下着如此大的雨他们仍然坚持给我们耐心的讲解,为我们答疑,他们的精神值得我们每个人学习。秉着这样的精神我们有理由相信未来的桥梁设计与制作会在我们这一代人身上发展得越来越好,谢谢你们的培养!

第三篇:铁路桥认识实习报告

时间:201x-6-1

地点:大涧大桥和二仙桥天气:晴

目的:了解桥梁后期加宽,拱桥。

今天是我们实习的第二天,我们来到了济南的大涧沟,参观了大涧沟桥和二仙大桥。大涧沟桥是省道103上的一座桥梁,此桥是典型的在老桥的基础上扩建的桥梁,在保留了原桥的前提下,做到了新桥与旧桥的很好连接。

因济南对南部山区开发,原来的桥梁已近不能满足通行能力的需要,对道路的加宽是必然的,在考察原有桥梁的基础上对桥梁进行了加宽。

考虑到这是条重要交通要道,如果把原来的桥拆掉就得需要在附近设置便桥来缓解压力。这样费用就大大增加,经考察发现原来的桥并没有损坏,就新梁跟旧梁有一定得区别,在原有的桥面搭接上新的桥面。

当然在老桥与新桥连接处事比较难处理的一部分,为了更好的使桥梁连接,施工过程中把老桥桥台除去一部分,使老桥与新桥之间更好的连接。

今天我们参观的第二座桥是二仙桥也是省道103上的一座桥,此桥是一座拱桥,在我的印象中好像只有在江南水乡才有这种桥梁,今天算是真正见到了这种桥了。

拱桥的受力特点,悬链线拱的几何性质及弹性中心,恒载作用下拱的内力计算,活载作用下拱的内力计算,裸拱内力计算,温度变化、砼收缩和拱脚变位的内力计算,拱圈强度及稳定性验算,拱圈应力的.调整,连拱计算。组合截面的计算特点,圆弧拱计算要点,其他类型拱桥的计算要点。

通过今天的实习,特别是在参观拱桥的时候,感觉我们有着无穷的智慧,在桥梁建设方面,更是造出了各式各样漂亮的桥梁,对他们感到敬佩.。

第四篇:铁道工程实习总结

时间如流水,一周的认识实习一晃即逝,在这刚刚过去的一周的认识实习期中,在两位老师的耐心讲解指导下,通过自己的努力和查阅资料,深刻的了解了铁路、桥梁、隧道和公路大桥的各种结构和施工技术。但是作为一名还未接触更多的专业知识的大学生来说,让我们从实践中对自己即将从事的专业获得一个认识,为今后专业课的学习打下坚实的基础。紧张的一周的实习生活结束了,在这一周里我还是有不少的收获、实习结束后好好总结了一下。

星期一老师在教师给我们做了认识实习总动员,鼓励我们认真的耐心的观察实习以后,认识实习正式开始。

我们在老师的带领下先后认识观察了:

1、陇海铁路线路。

2、陇海铁路Y河铁路大桥和西合铁路Y河特大铁路大桥。

3、西合铁路渭南南塬一号、二号隧道。

4、渭南渭河公路大桥。

周一我们来到陇海铁路,对线路进行认识实习,老师主要讲解了铁路的组成和无缝线路。

铁路是由钢轨、轨枕、联结零件、道床、防爬设备、道岔等组成。无缝线路:用焊接长轨条铺设的轨道,因为长轨条没有轨缝而得名。无缝线路类型:无缝线路分温度应力式及放散温度应力式两种。将每根12.5m或25m长的钢轨联结成轨道。接头之间还有一道轨缝,大约为6mm。留轨缝的道理很简单,是为了防止钢轨在热胀冷缩时产生的温度力。所谓“无缝线路”,就是把不钻孔、不淬火的25m长的钢轨,在基地工厂用气压焊或接触焊的办法,焊成200m到500m的长轨,然后运到铺轨地点,再焊接成1000m到2000m的长度,铺到线路上就成为一段无缝线路。

周二我们又来到了陇海铁路Y河铁路大桥和西合铁路Y河特大铁路大桥,进过老师的讲解得知这两座大桥均属于梁式桥。梁式桥是指其结构在垂直荷载作用下,其支座仅产生垂直反力,而无水平推力的桥梁。梁式桥的特点是其桥跨的承载结构由梁组成。梁式桥可分为简支梁式桥、连续梁式桥、悬臂梁式桥。

(1)简支梁式桥。简支梁桥是静定结构,其各跨独立受力。桥梁工程中广泛采用的简支梁桥有三种类型:

1)简支板桥。简支板桥主要用于小跨度桥梁。按其施工方式的不同分为整体式简支板桥和装配式简支板桥装配式板桥是目前采用最广泛的板桥形式之一。

2)肋梁式简支梁桥(简称简支梁桥)。简支梁桥主要用于中等跨度的桥梁。中小跨径在8―12m时,采用钢筋混凝土简支梁桥;跨径在20―50m时,多采用预应力混凝土简支梁桥。

3)箱形简支梁桥。箱形简支梁桥主要用于预应力混凝土梁桥。尤其适用于桥面较宽的预应力混凝土桥梁结构和跨度较大的斜交桥和弯桥。

(2)连续梁式桥和悬臂梁式桥。连续梁桥相当于多跨简支梁桥在中间支座处相连接贯通,形成整体的、连续的、多跨的梁结构。连续梁桥是大跨度桥梁广泛采用的结构体系之一,一般采用预应力混凝土结构。悬臂梁桥相当于简支梁桥的梁体越过其支点向一端或两端延长所形成的梁式桥结构。其结构特点是悬臂跨与挂孔跨交替布置,通常为奇数跨布置。

周三认识实习了西合铁路渭南南塬一号、二号隧道。隧道:为地下通道的一种,也是最常运用的一种。设计给交通或其他用途使用,通常用来穿山越岭,若施做于地面下称作地下隧道。隧道大部分的功能,为提供行人、脚踏车(自行车)、一般道路交通、机动车、铁路交通、或运河使用,而部份隧道只运送水、石油或其他特定服务,包括军事及商业物流等。

一个星期来的学习,使我学到了很多实践知识。我想我们最宝贵的是学到了许多书本上没有的实践经历。近距离的观察、学习,我对铁道工程这门课有了更加全面的认识。掌握的一些实用的具体的专业知识,而这些知识往往是我在学校很少接触,很少注意的,但又是十分重要、十分基础的知识。对我将来的工作有着重大意义的知识。我们应端正思想,扎实学习专业知识,才能更好的为祖国的铁路建设服务。

第五篇:铁道工程认识实习报告

第一部分前言

土木工程专业作为一项实践性很强的学科,书本上的知识仅仅只能作为指导作用,如果想深入了解土木工程具体是怎样应用的,只有到了实地才能有直观的体会。认识实习是土木工程教学计划中第一个实践性教学环节,所以对学生建立正确的专业思想,树立正确的专业知识学习态度有极其重要的影响作用。因此学校组织了我们这次的铁道工程认识实习,旨在让同学们能对课本上的知识有直观、感性的认识,也为以后进一步的工作和学习打下基础。

道路与铁道工程,包括的主要内容有铁路选线、铁路轨道、公路路面等方面,主要是研究铁道、公路、城市道路等交通基础设施的规划、勘测、设计、施工、运营等理论与关键技术的学科。此次实习主要有两方面:参观具有代表性的铁路,以及听老师的讲解。

第二部分专论

一、实习目的

1、通过参观各类道铁,加强对道铁的认识,了解道铁的总体设计、选线布置等特点。

2、通过实习,了解道铁施工技术,熟悉道铁构造,了解各类道铁材料的特性及应用。

3、通过实习,将所学理论知识与实践知识相结合,同时为以后的专业知识的.学习打下基础。

二、实习时间

20xx年11月5日

三、实习地点

青龙桥及周边

四、实习内容

1、京张铁路“之”字形铁路设计

京张铁路起始自北京丰台柳村,经居庸关、八达岭、河北的沙城、宣化至张家口。全长约200多公里。京张铁路在xx年9月4日开工,xx年8月11日建成,10月2日通车,施工时间比原定缩短了两年;而建造成本亦比原来预算节省了三十五万两白银。是中国首条不使用外国资金及人员,由中国人自行建设完成,投入营运的干线铁路。由当时的清政府委派詹天佑为京张铁路局总工程师。

全程分为三段,第一段丰台至南口段。第二段南口至青龙桥关沟段,关沟段穿越军都山,最大坡度为千分之三十三,曲线半径182.5米,隧道四座,长1644米,采用“之”字形铁路,工程非常艰巨。第三段工程的难度仅次于关沟,首先遇到的是怀来大桥,这是京张路上最长的一座桥,它由七根一百英尺长的钢梁架设而成。而我们这次实习的地点青龙桥车站,也就是著名的“之”字形铁路段。

“三十尺高一尺”,用铁路部门的专业语言说,就是千分之三十三点三的坡度。这是修筑京张铁路的最大难点。按照xx年重新修订颁布的《中华人民共和国铁路技术管理规程》规定,在地形条件最差的三等线路上,使用牵引力最大的电力机车,区间线路的最大限制坡度不得超过千分之二十五,即使是“加力牵引”,也不得超过千分之三十。而詹天佑所要设计的京张铁路,是在此技术管理规程下达的90多年前,相比之下难度可想而知。

为避开这段地形条件最差的路段,詹天佑试图寻找相对理想的路径,先后选测了七八条不同的比较线。但由于经费及工期的限制,最后还是不得不把立足点落回到关沟路段。由于按照通常的办法,千分之三十三点三的坡度没办法解决,因此詹天佑创造性的提出了“之”字形铁路。具体解释来,“之”字形铁路就是采用延长路程的方法以减缓线路的坡度,以“距离”换取“高度”。其实仔细看来,这条铁路更像横放的“人”字形。列车为了达到“人”字上面那条腿的顶端,需要先顺着下面这条腿行进到“人”字的“头部”,然后再掉过头来继续上行。这样,就把一段陡峭的坡道代替了。

而对于很长的一列火车,到达“人”字的“头部”以后掉头是一件很难的事情。因此詹天佑采取了“双机牵引”的方法:就是使用两台机车,一台在前面拉、一台在后面推,到了“人”字的头部,火车无需掉头,原先在前面的机车变成了车尾、由拉变推;原先在后面的机车现在变成了车头、由推变拉。同时,使用两台机车也可以加大牵引力,在载重量小的时候,仅用一台机车就可以满足要求,但是在火车的载重量大时,一台机车就不够用了,因此使用双机牵引也大大解决了京张铁路的运输动力问题。

2.铁道相关知识

铁路线路的构成有:路基、道床、枕木、钢轨、连接零件等,其作用是由钢轨承载机车车辆的各种力,并通过枕木、道床、路基均匀传给大地.引导列车按方向行进。

轨枕又称枕木,也是铁路配件的一种,由于现在所用轨枕材料不仅仅是木材,因此叫轨枕比枕木的叫法更加科学。轨枕的作用既要支承钢轨,又要保持钢轨的位置,还要把钢轨传递来的巨大压力再传递给道床。因此,轨枕必须具备一定的柔韧性和弹性,列车经过时,它可以适当变形以缓冲压力,但列车过后还得尽可能恢复原状。

其分为木制枕木,钢筋混凝土枕木,钢制枕木,复合材料枕木等。最初的轨枕都是用木材制作的,主要原因是由于木枕的弹性好、重量轻、绝缘性好、受周围介质的温度变化影响小、扣件与木枕连接简单、铺设和养护维修、运输方便、木枕与碎石道碴之间有较大的摩擦系数等等。其主要缺点是易腐朽,使用寿命短。为有效延长使用寿命,枕木一般必须经过注油防腐后使用,也就是我们所说的防腐枕木、注油普枕、浸油枕木。经过防腐处理的木枕,使用寿命也大大延长,在15年左右。所以,世界上90%的铁路都使用木枕。

随着森林资源的减少和人们环保意识的增强,从上世纪50年代起,钢筋混凝土枕被逐步推广开来。

钢筋混凝土枕的使用寿命长,稳定性高,养护工作量小,损伤率和报废率比木枕要低得多。在无缝线路上,钢筋混凝土轨枕比木枕的稳定性平均提高15~20%,因此,尤其适用于高速客运线。而其缺点主要是重量比木枕大得多。所以,在不稳固的路基及新填路基等处不宜采用;在冬季有冻胀的地段,一般不允许采用;在大量运输煤炭和矿石及线路道床严重脏污的地段,最好不采用。

道岔是一种使机车车辆从一轨道转入另一轨道的线路连接设备。有了道岔,可以充分发挥线路的通过能力。即使是单线铁路,如果铺设道岔,修筑一段大于列车长度的叉线,就可以对开列车。

由于道岔具有数量多、构造复杂、使用寿命短、限制列车速度、行车安全性低、养护维修投入大等特点,与曲线、接头并称为轨道的三大薄弱环节。道岔的基本形式有三种:即线路的连接、交叉、连接与交叉的组合。常用的线路连接有各种类型的单式道岔和复式道岔;交叉有直交叉和菱形交叉;连接与交叉的组合有交分道岔和交叉渡线等。

道岔分为很多种,以最简单的普通单开道岔为例。它由转辙器、连接部分、辙叉及护轨三个单元组成。车轮在通过辙叉时,从两根翼轨的最窄处到辙叉心的最尖端之间有一段空隙,这就是道岔的有害空间。车轮通过此处时,有可能因走错辙叉槽而引起脱轨。设置护轨的目的也就在此,它要强制引导车轮的运行方向。尽管如此,这个有害空间存在限制了列车通过道岔的速度,对开行高速列车十分不利。为了解决有害空间的危险性和对速度的限制,我们采用活动心轨道岔。活动心轨最主要的特点是辙叉心轨可以板动。当我们要开通某一方向轨道时,活动心轨的辙叉心轨就与此方向的轨道密贴,与另一方向轨道分开,这样一来,普通道岔的有害空间就不存在了,列车的运行速度也有很大提高。

除了普通单开道岔以外还有很多其他类型的道岔:如双开道岔、三开道岔以及多开道岔等,道岔各有其代号,比如9号道岔、12号道岔、18号道岔等等。这些代号代表了辙叉角(α)的余切值,也就是辙叉心部分直角三角形两条直角边的比值,辙叉角α越小,N值就越大,导曲线半径也越大,列车侧线通过道岔时就越平稳,允许过岔速度也就越高。所以采用大号道岔对于列车运行是有利的。不过,事物总有它的两面性,道岔号数越大,道岔越长,造价自然就高,占地也要多得多。因此,采用什么号数的道岔要因地制宜,因线而异,不可一概而论。

道床通常指的是轨枕下面,路基面上铺设的道碴垫层。道床的厚度和宽度是根据铁路等级确定的,中国铁路规定道床厚度为25~50厘米。道床可以是单层的或双层的,铁路正线上一般采用双层道床,下面的一层称做垫层,可以防止翻浆冒泥,其厚度一般不小于20厘米。不易风化的砂石路基,可以不铺垫层。道床顶面的宽度决定于轨枕长度。中国铁路在使用混凝土轨枕的线路上规定道床宽度为3.1米。碎石道床的边坡为1:1.75。

推荐专题: 铁道工程认识实习报告

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号