首页 > 更多文库 > 1号文库 > 详情页

人教版数学七年级上册知识点总结归纳(范文六篇)

2022-09-09 11:35:10

千文网小编为你整理了多篇相关的《人教版数学七年级上册知识点总结归纳(范文六篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《人教版数学七年级上册知识点总结归纳(范文六篇)》。

第一篇:人教版七年级上册数学思维导图_人教版七年级数学上册知识点思维导图及总结

人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四 个章节的内容.第一章 有理数 一、知识框架二.知识概念1.有理数: (1)凡能写成q (p, q为整数且 p ? 0) 形式的数,都是有理数.正整数、0、负整数统称整数;正 p分数、负分数统称分数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一 定是负数,+a 也不一定是正数;?不是有理数;(2)有理数的分类:? ?正整数 ?正有理数 ?正分数 ? ? ① 有理数 ?零 ? ?负整数 ?负有理数 ? ?负分数 ?? ?正整数 ?整数 ?零 ? ? ? ② 有理数 ? ?负整数 ? ?正分数 ?分数 ? ?负分数 ?2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0; (2)相反数的和为 0 ? a+b=0 ? a、b 互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的 意义是数轴上表示某数的点离开原点的距离;?a (a ? 0) (a ? 0) ? ?a (2) 绝对值可表示为: a ? ?0 (a ? 0) 或 a ? ? ; 绝对值的问题经常分类讨论; ? a ( a ? 0) ? ? ? a ( a ? 0 ) ?5.有理数比大小: (1)正数的绝对值越大,这个数越大; (2)正数永远比 0 大,负数永远比 0 小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两 个数,右边的数总比左边的数大; (6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数: 乘积为 1 的两个数互为倒数; 注意: 0 没有倒数; 若 a≠0, 那么 a 的倒数是1 ; a若 ab=1? a、b 互为倒数;若 ab=-1? a、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ; (2)加法的结合律: (a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个 数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba; (2)乘法的结合律: (ab)c=a(bc) ; (3)乘法的分配律:a(b+c)=ab+ac .即 无意义 . 12. 有理数除法法则: 除以一个数等于乘以这个数的倒数; 注意: 零不能做除数,13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方;a 0(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15. 科学记数法: 把一个大于 10 的数记成 a×10n 的形式, 其中 a 是整数数位只有一位的数, 这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似 数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正 负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题. 体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生 的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本 章内容时,应该多创设情境,充分体现学生学习的主体性地位。第二章 整式的加减 一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中 不含字母的一类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式 的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多 项式的项;多项式里,次数最高项的次数叫多项式的次数。

通过本章学习,应使学生达到以下学习目标: 1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行 同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去 括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过 程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。第三章 一.知识框架一元一次方程二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是 1,并且含未知数项的系数不 是零的整式方程是一元一次方程. 2.一元一次方程的标准形式: ax+b=0(x 是未知数,a、b 是已知数,且 a≠0). 3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为 1 …… (检验方程的解). 4.列一元一次方程解应用题: (1)读题分析法:………… 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如: “大,小,多,少,是,共,合,为,完成, 增加,减少,配套-----” ,利用这些关键字列出文字等式,并且据题意设出未知数,最后利 用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现, 仔细读题, 依照题意画出有关图形, 使图形各部分具有特定的含义, 通过图形找相等关系是解决问题的关键, 从而取得布列方程 的依据,最后利用量与量之间的关系(可把未知数看做已知量) ,填入有关的代数式是获得 方程的基础. 11.列方程解应用题的常用公式: 距离 距离 速度 ? 时间 ? (1)行程问题: 距离=速度·时间 ; 时间 速度 (2)工程问题: 工作量=工效·工时 (3)比率问题: 部分=全体·比率工效 ? 工作量 工时工时 ? 工作量 ; 工效比率 ?部分 全体全体 ?部分 ; 比率(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 售价 ? 成本 1 ? 100% ; (5) 商品价格问题: 售价=定价· 折· , 利润=售价-成本, 利润率 ? 成本 10 (6)周长、面积、体积问题:C 圆=2π R,S 圆=π R2,C 长方形=2(a+b),S 长方形=ab, C 正方形=4a,1 S 正方形=a2,S 环形=π (R2-r2),V 长方体=abc ,V 正方体=a3,V 圆柱=π R2h ,V 圆锥= π R2h. 3 本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题 的快乐很容易激起学生对数学的乐趣, 所以要注意引导学生从身边的问题研究起, 进行有效 的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会 数学思想方法。第四章 一、知识框架图形的认识初步本章的主要内容是图形的初步认识, 从生活周围熟悉的物体入手, 对物体的形状的认识 从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识 立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段 和角.二、本章书涉及的数学思想:1.分类讨论思想。

在过平面上若干个点画直线时, 应注意对这些点分情况讨论; 在画图形时, 应注意图形的各种可能性。

2.方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

3.图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意 转化思想的应用,如立体图形与平面图形的互相转化。

4.化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式

第二篇:人教版七年级数学上册知识学习技巧

一、要不断培养学习数学的兴趣和求知渴望

有许多同学在小学都曾有过这样的感受,每当你认识了一个数学规律,解决了一个较难的应用问题,成功的喜悦是无法用别的东西来替代的,它激励你的学习热情和好奇心,越学越爱学。学习的兴趣和求知欲是要不断地培养的,况且同学们刚刚迈进“数学王国”的大花园里,许多奥妙无穷的数学问题还等着你们去学习、观赏、研究。

二、要养成认真读书,独立思考的好习惯

过去有些同学认为:学习数学主要是靠上课听老师讲明白,而把我们手中的数学课本仅仅当成做作业的“习题集”。这就有两个认识问题必须要解决。

一是同学们要认识到,我们的教科书记载了由数学工作者整理的、大家必须掌握的基础知识,以及如何运用这些知识解决问题等。因此,要想真正获得知识,认真读书、培养自学能力是一条根本途径。我们希望同学们在中学老师的指导、帮助下,从过去不读书、不会读书转变为爱读书、学会读书,进而养成认真读书的好习惯。

二是同学们还要认识到,许多数学问题不是单靠老师讲明白的,主要是靠同学们自己想明白的。孔子日:”学而不思则罔,思而不学则殆。”这句话极力精辟地阐述了学习和思考的辩证关系,即要学而恩、又要思而学。大家学习数学的过程主要是自己不断深入思考的过程。我们希望大家今后在上数学课时。无论老师讲新课,还是复习、讲评作业练习,都要使自己的注意力高度集中,边听边积极思考问题,捕捉有用的信息,随时抓住萌发出的灵感。对于没弄明白的问题,一定要及时、主动去解决它,直到弄懂为止。

第三篇:数学人教版七年级上册知识点归纳

数学人教版七年级上册知识点有哪些大家知道吗?下面小编为大家精心整理的数学人教版七年级上册知识点归纳,欢迎大家阅读与学习!

第一章有理数

1.1正数与负数

①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中*数。

注意搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

1.2有理数

1、有理数

(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴

(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;

(2)数轴三要素:原点、正方向、单位长度;

(3)原点:在直线上任取一个点表示数0,这个点叫做原点;

(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。

3、相反数

只有符号不同的两个数互为相反数。(如2的相反数是-2,0的相反数是0)

4、绝对值

(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3有理数的加减法

有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律、结合律、分配律。

②有理数除法法则:

除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把绝对值相除;

0除以任何一个不等于0的数,都得0。

1.5有理数的乘方

1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学记数法,注意a的范围为1≤a<10。

第二章整式的加减

2.1整式

1、单项式

由数字和字母乘积组成的式子。系数,单项式的次数.单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是不是单项式,关键要看代数式中数与字母是不是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,也不是单项式.

2、单项式的系数

指单项式中的数字因数。

3、单项数的次数

指单项式中所有字母的指数的和。

4、多项式

几个单项式的和。判断代数式是不是多项式,关键要看代数式中的每一项是不是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的*质符号。

5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

6、单项式和多项式统称为整式。

2.2整式的加减

1、同类项

所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(不等于0)无关。

2、同类项必须同时满足两个条件

(1)所含字母相同;(2)相同字母的指数相同。二者缺一不可.

同类项与系数大小、字母的排列顺序无关。

3、合并同类项

把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

4、合并同类项法则

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

5、去括号法则

去括号,看符号:是正号,不变号;是负号,全变号。

6、整式加减的一般步骤:一去、二找、三合

(1)如果遇到括号按去括号法则先去括号.(2)结合同类项.(3)合并同类项。

第三章一元一次方程

3.1一元一次方程

1、方程是含有未知数的等式。

2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

注意:判断一个方程是否是一元一次方程要抓住三点:

(1)未知数所在的式子是整式(方程是整式方程);

(2)化简后方程中只含有一个未知数;

(3)经整理后方程中未知数的次数是1.

3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

4、等式的*质

(1)等式两边同时加(或减)同一个数(或式子),结果仍相等;

(2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

注意:运用*质时,一定要注意等号两边都要同时变;运用*质2时,一定要注意0这个数.

3.2、3.3解一元一次方程

在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用.因此在解方程时还要注意以下几点:

①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;

②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;

③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;

④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写成连等的形式;

⑤系数化为1:字母及其指数不变,系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要把分子、分母搞颠倒。

3.4实际问题与一元一次方程

一.概念梳理

列一元一次方程解决实际问题的一般步骤是:

①审题,特别注意关键的字和词的意义,弄清相关数量关系;

②设出未知数(注意单位);

③根据相等关系列出方程;

④解这个方程;

⑤检验并写出*(包括单位名称)。

二、思想方法(本单元常用到的数学思想方法小结)

⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.

⑵方程思想:用方程解决实际问题的思想就是方程思想.

⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想.

⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越*.

⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.

三、数学思想方法的学习

1.解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.

2.寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.

3.列方程解应用题的检验包括两个方面:

⑴检验求得的结果是不是方程的解;

⑵是要判断方程的解是否符合题目中的实际意义.

四、应用(常见等量关系)

行程问题:s=v×t

工程问题:工作总量=工作效率×时间

盈亏问题:利润=售价-成本

利率率=利润÷成本×100%

售价=标价×折扣数×10%

储蓄利润问题:利息=本金×利率×时间

本息和=本金+利息

第四章几何图形初步

4.1几何图形

1、几何图形:从形形**的物体外形中得到的图形叫做几何图形。

2、立体图形:这些几何图形的各部分不都在同一个平面内。

3、平面图形:这些几何图形的各部分都在同一个平面内。

4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。立体图形中某些部分是平面图形。

5、三视图:从左面看,从正面看,从上面看。

6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。

7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;

⑵点无大小,线、面有曲直;

⑶几何图形都是由点、线、面、体组成的;

⑷点动成线,线动成面,面动成体;

⑸点是组成几何图形的基本元素。

4.2直线、*线、线段

1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。

2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。

4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

5、连接两点间的线段的长度,叫做这两点的距离。

6、直线的表示方法:直线可记作直线ab或记作直线m.

(1)用几何语言描述右面的图形,我们可以说:点p在直线ab外,点a、b都在直线ab上.

(2)点o既在直线m上,又在直线n上,我们称直线m、n相交,交点为o.

7、在直线上取点o,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条*线,记作*线om或记作*线a.

注意:*线有一个端点,向一方无限延伸.

8、在直线上取两个点a、b,把直线分成三个部分,去掉两边的部分,保留点a、b和中间的一部分就得到一条线段.记作线段ab或记作线段a.

注意:线段有两个端点.

4.3角

1.角的定义:有公共端点的两条*线组成的图形叫角。这个公共端点是角的顶点,两条*线为角的两边。

2、角有以下的表示方法:

①用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.

②用一个大写字母表示.这个字母就是顶点.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.

③用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠α、∠1。

3、以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。

4、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的*线,叫做这个角的平分线。

5、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;

如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

6、同角(等角)的补角相等;同角(等角)的余角相等。

7、方位角:一般以正南正北为基准,描述物体运动的方向。

第四篇:人教版六年级数学上册知识点归纳

一、学习目标:

1.使学生能在方格纸上用数对确定位置;

2.使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;

3.使学生理解倒数的意义,掌握求倒数的方法;

4.理解并掌握分数除法的计算方法,会进行分数除法计算;

5.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本*质。能够正确地化简比和求比值;

6.使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

7.使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

二、学习难点:

1.能用数对表示物体的位置,正确区分列和行的顺序;

2.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;

3.掌握求倒数的方法;

4.圆的周长和圆周率的意义,圆周长公式的推导过程;

5.百分数的意义,求一个数是另一个数的百分之几的应用题;

6.理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;

7.理解比的意义。

三、知识点概念总结:

1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归

5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

8.小数的倒数:

普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1

9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:*数除以乙数(0除外),等于*数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。

15.比的基本*质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的*质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

16.比例的*质:在比例里,两个外项的乘积等于两个内项的乘积。比例的*质用于解比例。

17.比和比例的区别:

(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。

(2)比的基本*质和比例的基本*质意义不同、应用不同。比的*质:比的前项和后项都乘或除以一个不为零的数。比值不变。比例的*质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的*质用于解比例。联系:比例是由两个相等的比组成。

18.比和比例的意义:

比的意义是两个数的除又叫做做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!

19.比和比例的联系:

比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。

20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

21.圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号o表示

22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一。d=2r或r=d/2。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母c表示。

25.圆周率:圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

26.圆的面积公式:圆所占平面的大小叫做圆的面积。πr2;用字母s表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

27.周长计算公式:

(1)已知直径:c=πd

(2)已知半径:c=2πr

(3)已知周长:d=c/π

(4)圆周长的一半:1/2周长(曲线)

(5)半圆的周长:1/2周长+直径(π÷2+1)

28.面积计算公式:

(1)已知半径:s=πr2

(2)已知直径:s=π(d/2)2

(3)已知周长:s=π[c÷(2π)]2

29.百分数与分数的区别:

(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.

(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.

(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。

30.百分数应用:

百分数一般有三种情况:①100%以上,如:增长率、增产率等。②100%以下,如:发芽率、成长率等。③刚好100%,如:正确率,合格率等。

31.百分数的意义:

百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。

32.日常应用:

每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又简练。

知识点扩展

1.圆的定义:

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

*说:到定点的距离等于定长的点的*叫做圆。

2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

6.圆的种类:(1)整体圆形,(2)弧形圆,(3)扁圆,(4)椭形圆,(5)缠丝圆,(6)螺旋圆,(7)圆中圆、圆外圆,(8)重圆,(9)横圆,(10)竖圆,(11)斜圆。

7.圆和点的位置关系:圆和点的位置关系:以点p与圆o的为例(设p是一点,则po是点到圆心的距离),p在⊙o外,po>r;p在⊙o上,po=r;p在⊙o内,0≤po

8.百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

第五篇:七年级上册数学知识点人教版

学习从来无捷径。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是小编给大家整理的一些七年级上册数学知识点人教版的学习资料,希望对大家有所帮助。

初一上册数学知识点总结(人教版)

第一章 有理数

1.有理数:

(1)凡能写成 形式的数,都是有理数,整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数; a>0←→a是正数; a<0←→a是负数;

a≥0←→a是正数或0  a是非负数; a≤ 0←→a是负数或0←→a是非正数。

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0 ←→ a+b=0 ←→ a、b互为相反数。

(4)相反数的商为-1。

(5)相反数的绝对值相等

4.绝对值:

(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;

注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(4) |a|是重要的非负数,即|a|≥0;

新人教版七年级数学知识点

第五章 相交线与平行线

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:

同位角F(在两条直线的同一旁,第三条直线的同一侧)

内错角Z(在两条直线内部,位于第三条直线两侧)

同旁内角U(在两条直线内部,位于第三条直线同侧)

4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足

6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c

10、平行线的判定:

①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:

①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________

14、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

15、命题:判断一件事情的语句叫命题。

命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。

命题分为真命题和假命题两种;定理是经过推理证实的真命题。

用尺规作线段和角

1.关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。

2.关于尺规的功能

直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

七年级数学知识点总结(下册)

平方根、算数平方根和立方根

1、平方根

(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果

a,那么x叫做a的平方根.x2

(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

33的平方等于9,9的平方根是(3)平方与开平方互为逆运算:

(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;

一个负数没有平方根,即负数不能进行开平方运算

(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;

正数a的负的平方根可用-表示.

a2(6)x <—> x

a是x的平方 x的平方是a

x是a的平方根 a的平方根是x

2、算术平方根

a,那么这个正数(1)算术平方根的定义: 一般地,如果一个正数x的平方等于a,即x2

x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.

规定:0的算术平方根是0.

。a (x≥0)中,规定x也就是,在等式x2

(2)的结果有两种情况:当a是完全平方数时,是一个有限数;

当a不是一个完全平方数时,是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;

当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小

a (x≥0)(5)x2 <—> x

a是x的平方 x的平方是a

x是a的算术平方根 a的算术平方根是x

七年级上册数学知识点总结人教版相关文章:

★ 初中七年级上册数学教学工作总结2021

★ 人教版初中数学教学总结2021

★ 新人教版初中数学教学总结2021

★ 新人教版七年级数学上册教案2021范文

★ 最新数学七年级上册第一单元复习教案文案

★ 人教版初中数学教学经验总结2021

★ 人教版初中数学教师教案五篇

★ 人教版初中数学教学工作总结2021

★ 初中数学人教版教案范文五篇

★ 2021最新人教版七年级数学上册教案文案

第六篇:人教版七年级数学上册知识点复习方法

复习目标(包括重点难点)

针对全班的学习程度,初步把复习目标定为尽力提高全班学生学习成绩,提高优良率和平均分,提高学生运用基础知识解决实际问题的能力。

复习重点难点:

第五章重点:复习两条直线的相交和平行的位置关系,以及相交平行的综合应用。难点:垂直、平行的性质和判定的综合应用。第六章重点:在平面直角坐标糸中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用。难点:建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化。

第七章重点:平面直角坐标系,重点是理解平面直角坐标系的有关概念,会画平面直角坐标系,能在平面直角坐标系中根据坐标找出点,由点找出坐标;加深对数形结合思想的体会。难点是平面直角坐标系的实际应用。

第八章重点:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题。难点:以方程组为工具分析问题、解决含有多个未知数的问题。

第九章重点:一元一次不等式(组)的解法及应用。难点:一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题。

第十章重点:收集、整理和描述数据。

难点:样本的抽取,频数分布直方图的画法。

复习策略(措施)

预设1.“先分后总”的复习策略,先按章复习,后汇总复习;

2.“边学边练”的策略,在复习知识的同时,紧紧抓住练这个环节;

3.“环节检测”的策略,每复习一个环节,就检测一次,发现问题及时解决;

3.“仿真模拟”的复习策略,在总复习中,进行几次仿真测试,来发现问题,并及时解决问题,促进学生学习质量的提高。

4.及时“总结归纳”的策略,对于一个知识环节或相联系的知识点,要及时进行归纳与总结,让学生系统掌握知识,提高能力。

推荐专题: 人教版数学七年级上册知识点总结归纳

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号