千文网小编为你整理了多篇相关的《“圆柱的体积”教学案例分析(大全)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《“圆柱的体积”教学案例分析(大全)》。
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在圆的体积公式推导过程中,给予学生足够的时间和空间,激发学生的探究的欲望,培养学生的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应及时捕捉,让它开得绚丽多彩,从而让学生的个性能得到充分的培养。让学生老师这样才能寓教于乐,从而达到了事半功倍的效果。在教此内容时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、展示知识的发生过程,让学生在参与中学习。
现代教育认为课堂教学首先不是知识的传递过程,而是学生的发展过程;首先不是教师的教授过程,而是学生的学习过程;首先不是教师教会的过程,而是学生学会的过程。展开部分,首先让学生大胆猜想,圆柱体的体积可能等于什么?大部分学生猜测圆柱体的体积可能等于底面积×高。在验证圆柱的体积是否与圆柱的底面积和高有关的过程中,我让两名学生到台上演示,学生兴致很高,都想到台上进行操作,被选出进行演示的学生非常认真地进行操作,而其他学生也是非常认真的进行观察。因此推导得出圆柱体积公式时,学生感到非常好懂,也学得很轻松。
二、在讨论交流中学习。
通过实验验证之后,让学生看课件后,小小组进行了如下讨论:
(1)拼成的近似长方体体积与原来的圆柱体积有什么关系?
(2)拼成的近似长方体的底面积与原来的圆柱底面积有什么关系?
(3)拼成的近似长方体的高与原来的圆柱高有什么关系?这样不仅为学生提供动手操作、观察以及交流讨论的'平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。在这一环节中,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:学生亲身体验的感受不够,因为圆柱体积演示器只有一套,所以,只能是个别学生进行操作,大部分学生只能远距离观察。有些学生因看得不清楚而观察、思考得不正确。如果条件允许,演示器多一些,能让学生人人都进行操作,我想学生的参与率、学生动手能力、学生的观察与思考、教学效果都会更好。
【教材简析】:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
【教学内容】:
p19-20页的内容和例题,完成“做一做”及练习三第1~4题。
【教学目标】:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、渗透转化思想,培养学生的自主探索意识。
【教学重点】:
掌握圆柱体积的计算公式。
【教学难点】:
圆柱体积的计算公式的推导。
【教学过程】:
第一课时
本册总课时:1―2课时
一、复习
1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、什么叫做物体的体积?你会计算下面那些图形的体积?
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形――课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
(1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)
(2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)
(3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)
(3)通过观察,使学生明确:
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,
v=sh
圆柱的体积计算公式是:
v=sh
2、课堂练习。
(1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)让学生解答和板算,最后师生共同完成、
解:v=sh
=75×90
=675(立方厘米)
答:它的体积是675立方厘米。
3、引导思考。
如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(v=πrh)
4、作业。
教学内容:
P19-20页例5、例6及补充例题,完成做一做及练习三第1~4题。
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长宽高,长方体和正方体体积的统一公式底面积高,即长方体的体积=底面积高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积高,所以圆柱的体积=底面积高,V=Sh)
教学目标
1.理解圆柱体体积公式的推导过程,掌握计算公式.
2.会运用公式计算圆柱的体积.
教学重点
圆柱体体积的计算.
教学难点
理解圆柱体体积公式的推导过程.
教学过程
一、复习准备
(一)教师提问
1.什么叫体积?怎样求长方体的体积?
2.圆的面积公式是什么?
3.圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)
二、新授教学
(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)
1.教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.
2.学生利用学具操作.
3.启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.
③近似长方体的高就是圆柱的高,没有变化.
4.学生根据圆的面积公式推导过程,进行猜想.
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5.启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体.
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.
6.推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由.
因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)
(3)用字母表示圆柱的体积公式.(板书:V=Sh)
(二)教学例4.
1.出示例4
例4.一根圆柱形钢材,底面积是50平方厘米,高是2。1米,它的体积是多少?
2。1米=210厘米
50×210=10500(立方厘米)
答:它的体积是10500立方厘米.
2.反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5.
1.出示例5
例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3。14×
=3。14×100
=314(平方厘米)
水桶的容积:
314×25
=7850(立方厘米)
=7。8(立方分米)
答:这个水桶的容积大约是7。8立方分米.
三、课堂小结
通过本节课的学习,你有什么收获?
1.圆柱体体积公式的推导方法.
2.公式的应用.
四、课堂练习
(一)填表
底面积S(平方米)15
高h(米)3
圆柱的体积V(立方米)6.4
(二)求下面各圆柱的体积.
(三)一个圆柱形水池,半径是10米,深1。5米.这个水池占地面积是多少?水池的容积是多少立方米?
五、课后作业
(一)求下列图形的表面积和体积.(图中单位:厘米)
(二)两个底面积相等的圆柱,一个圆柱的高为4。5分米,体积为81立方分米.另一个圆柱的高为3分米,体积是多少?
六、板书设计
在新课程不断向纵深推进的今天,我们的课堂既要继承传统,把课上杂实。同时,也要把课上厚实。在教《圆柱的体积》一课时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识,并利用新知去解决实际问题。对此,我作如下反思:
(一)在学习情境中体验数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、猜测、操作、验证、归纳等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的价值,同时掌握必要的基础知识与基本技能。
在这节课中,我承接了上节课的内容,提问引出给水杯做布套是在求圆柱的表面积,求圆柱能装多少水是在求圆柱的容积,也就是体积,然后顺势提出你能计算圆柱体的体积吗?这一全课的核心问题,从而引发学生的猜测、讨论、交流等数学活动,引导学生可以用以前学过的知识将圆柱转化成近似的长方体,然后让学生在小组内利用手中的学具进行操作实验将其插拼成一个近似长方体;通过让学生观察比较,发现联系:二者之间什么变了,什么不变?接着我使用了课件-----把圆柱体沿着它的直径切成了32和64等份,拼成一个近似的长方体,展示切拼后的长方体,让学生更加直观的观察,从而证实自己的推测。并总结出圆柱体的体积计算公式。
由此至终让学生经历了做数学的过程,并伴随着问题的圆满解决,又使学生体验到了成功的喜悦与满足。与此同时,使学生理解与感受到了数学的魅力。
(二)在观察操作中探索新知
数学学习过程充满着观察、验证、推理等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。观察是课程实施中经常让学生进行的一种活动,观察的效果取决于观察者是否能够关注被观察的对象。操作是让学生进行感知的另一种活动,是一种内部思维的外在具体化。交流是在观察操作基础上的一种由动作上升到语言概括的过程。
在本节课的动手操作中,让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。你有什么发现?你是怎样想的?等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学,而不是去模仿复制别人的数学。
(三)在练习中巩固新知,提升能力
《数学课程标准》要求以人为本,以学生发展为本。因此,教师应根据不同的教学内容精心设计练习,促进学生全面发展。我充分考虑到本班学生的实际水平及年龄特征,选择了贴近学生生活的练习题,有坡度,由易到难,循序渐进,激发了学生的学习兴趣,使各个层次的学生都能得到不同的锻炼,能力都有所提升。
(四)在本节课中的不足之处
由于学生的学具有限,在很大程度上阻碍了学生主动探究的欲望和动手操作的能力,加上本人能力有限,语言组织能力不是很好,使课堂气氛不是那么活跃,课堂显得有些压抑,在今后的教学中还有待于提高。
推荐专题: “圆柱的体积”教学案例分析