首页 > 更多文库 > 1号文库 > 详情页

八年级数学教情学情分析(大全)

2023-08-01 21:59:18

千文网小编为你整理了多篇相关的《八年级数学教情学情分析(大全)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《八年级数学教情学情分析(大全)》。

第一篇:年级数学教案

一、教材分析:

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

二、学生分析:

该段学生具有一定的`独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

三、教法分析:

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

四、学法分析:

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

五、教学程序:

第一环节:相关知识回顾

以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

3、例题讲解:求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知、求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。从而培养他们语言表达能力,让学生的个性得到充分的展示

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

第二篇:年级的数学教案

教学目标:

(1)理解通分的意义,理解最简公分母的意义;

(2)掌握分式的通分法则,能熟练掌握通分运算。

教学重点:分式通分的理解和掌握。

教学难点:分式通分中最简公分母的确定。

教学工具:投影仪

教学方法:启发式、讨论式

教学过程:

(一)引入

(1)如何计算:

由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

(2)如何计算:

(3)何计算:

引导学生思考,猜想如何求解?

(二)新课

1、类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

注意:通分保证

(1)各分式与原分式相等;

(2)各分式分母相等。

2.通分的依据:分式的基本性质.

3.通分的关键:确定几个分式的最简公分母.

通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

根据分式通分和最简公分母的定义,将分式通分:

最简公分母为:

然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx

通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

例1 通分:xxx

分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

解:∵ 最简公分母是12xy2,

小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

解:∵最简公分母是10a2b2c2,

由学生归纳最简公分母的思路。

分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。

第三篇:年级的数学教案

【教学目标】

1、了解三角形的中位线的概念

2、了解三角形的中位线的性质

3、探索三角形的中位线的性质的一些简单的应用

【教学重点、难点】

重点:三角形的中位线定理。

难点:三角形的中位线定理的证明中添加辅助线的思想方法。

【教学过程】

(一)创设情景,引入新课

1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?

2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片

(1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?

(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?

3、引导学生概括出中位线的概念。

问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?

启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。

4、猜想:DE与BC的关系?(位置关系与数量关系)

(二)、师生互动,探究新知

1、证明你的猜想

引导学生写出已知,求证,并启发分析。

(已知:SABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)

启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)

启发2:证明线段的倍分的方法有哪些?(截长或补短)

学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。

证明:如图,以点E为旋转中心,把SADE绕点E,按顺时针方向旋转180b,得到SCFE,则D,E,F同在一直线上,DE=EF,且SADE≌SCFE。

∴∠ADE=∠F,AD=CF,

∴AB∥CF。

又∵BD=AD=CF,

∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),

∴DF∥BC(根据什么?),

∴DE 1/2BC

2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。

(三)学以致用、落实新知

1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少?

2、想一想:如果SABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则SDEF的周长是多少?

3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。

求证:四边形EFGH是平行四边形。

启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?

启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?

证明:如图,连接AC。

∵EF是SABC的中位线,

∴EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。

同理,HG 1/2AC。

∴EF HG。

∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)

挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?

(四)学生练习,巩固新知

1、请回答引例中的问题(1)

2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:∠PNM=∠PMN

(五)小结回顾,反思提高

今天你学到了什么?还有什么困惑?

第四篇:年级数学教案

八年级下数学教案-变量与函数(2)

一、教学目的

1.使学生理解自变量的取值范围和函数值的意义。

2.使学生理解求自变量的取值范围的两个依据。

3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。

4.通过求函数中自变量的`取值范围使学生进一步理解函数概念。

二、教学重点、难点

重点:函数自变量取值的求法。

难点:函灵敏处变量取值的确定。

三、教学过程

复习提问

1.函数的定义是什么?函数概念包含哪三个方面的内容?

2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的条件是什么?

(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)

4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。

新课

1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。

2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:

(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。

(2)自变量取值范围要使实际问题有意义。

3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。

推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。

4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:

(1)例3中的4个小题归纳起来仍是三类题型。

(2)求函数值的问题实际是求代数式值的问题。

补充例题

求下列函数当x=3时的函数值:

(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小结

1.解析法的意义:用数学式子表示函数的方法叫解析法。

2.求函数自变量取值范围的两个方法(依据):

(1)要使函数的解析式有意义。

①函数的解析式是整式时,自变量可取全体实数;

②函数的解析式是分式时,自变量的取值应使分母≠0;

③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

(2)对于反映实际问题的函数关系,应使实际问题有意义。

3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。

练习:P94中1,2,3。

作业:P95~P96中A组3,4,5,6,7。B组1,2。

四、教学注意问题

1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。

2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。

3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。

第五篇:年级的数学教案

教材分析

1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

学情分析

1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的`特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

教学目标

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

教学重点和难点

重点:等腰三角形的性质及应用。

难点:等腰三角形的性质证明。

第六篇:年级数学教案

【教学目标】

1、了解三角形的中位线的概念

2、了解三角形的中位线的性质

3、探索三角形的中位线的性质的一些简单的应用

【教学重点、难点】

重点:三角形的中位线定理。

难点:三角形的中位线定理的证明中添加辅助线的思想方法。

【教学过程】

(一)创设情景,引入新课

1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?

2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片

(1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?

(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?

3、引导学生概括出中位线的概念。

问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?

启发学生得出:三角形的`中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。

4、猜想:DE与BC的关系?(位置关系与数量关系)

(二)、师生互动,探究新知

1、证明你的猜想

引导学生写出已知,求证,并启发分析。

(已知:SABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)

启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)

启发2:证明线段的倍分的方法有哪些?(截长或补短)

学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。

证明:如图,以点E为旋转中心,把SADE绕点E,按顺时针方向旋转180b,得到SCFE,则D,E,F同在一直线上,DE=EF,且SADE≌SCFE。

∴∠ADE=∠F,AD=CF,

∴AB∥CF。

又∵BD=AD=CF,

∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),

∴DF∥BC(根据什么?),

∴DE 1/2BC

2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。

(三)学以致用、落实新知

1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少?

2、想一想:如果SABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则SDEF的周长是多少?

3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。

求证:四边形EFGH是平行四边形。

启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?

启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?

证明:如图,连接AC。

∵EF是SABC的中位线,

∴EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。

同理,HG 1/2AC。

∴EF HG。

∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)

挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?

(四)学生练习,巩固新知

1、请回答引例中的问题(1)

2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:∠PNM=∠PMN

(五)小结回顾,反思提高

今天你学到了什么?还有什么困惑?

推荐专题: 八年级数学教情学情分析

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号