千文网小编为你整理了多篇相关的《学习《离散数学》心得体会》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《学习《离散数学》心得体会》。
《课程标准》对数学的教学内容,教学方式,教学评估教育价值观等多方面都提出了许多新的要求。为保证新课程标准的落实,我把课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想,把数学教学看成是师生之间学生之间交往互动,共同发展的过程。
一、更新观念、改变教学方法
课堂教学是教学的基本形式。著名教育家陶行知先生说:“教的法子要根据学的法子”。所以首先必须从教师的“教”开始。
1、备课:变备教材为备学生
老师要注意到自身要有良好的语言表达能力,注意到文字的表达,注意对学生的组织管理。老师的备课要探讨学生如何学,要根据不同的内容确定不同的学习目标,要根据一年级学生的具体情况指导如何进行预习、听课、做复习、做作业等,要考虑到观察能力、想象能力、思维能力及总结归纳能力的培养。
2、上课:让“走教案”变为为生动性教学
教学过程是一个极具变化发展的动态生成的过程,其间必然有许多非预期的因素,即便教师对学情考虑再充分,也有“无法预知”的场景发生,尤其当师生的主动性、积极性都充分发挥时,实际的教育过程远远要比预定的、计划中的过程生动、活泼、丰富得多。教师要利用好即时生成性因素,展示自己灵活的教学机智,促成课堂教学的动态生成,创造和谐的课堂教学氛围。
总之,在以后的教学中,要注意多学习,多实践,多总结,多把快乐带进课堂。在课改的道路上,激发学生的学习动机,培养学生的学习兴趣、教给学生好的学习方法,做一个合格的引路人。
二、活跃思维、改变学习方法
科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥,能把知识转化为能力。
1、要有好的学习习惯
现代教学论强调要实现有意义学习,强调理解对知识保持和应用的作用,即我们的目的不是为了记忆而学习,而是为了应用而学习,不是为了对单个知识点的掌握而学习,而是为了实现对知识点间的贯通性理解而学习,这就需要我们变传统的“接受”式学习方式为“内化”式的学习,由被动学习转变为主动学习,充分调动学习的积极性和创造性。
2、要多说
教学中教师要鼓励、引导学生在感性材料的基础上,理解数学概念或通过数量关系,进行简单的判断、推理,从而掌握最基础的知识。这个思维过程,用语言表达出来,这样有利于及时纠正学生思维过程的缺陷,对全班学生也有指导意义。
根据小学生的年龄特点,上好数学课应该尽量地充分调动学生的各种感官,提高学生的学习兴趣,而不能把学生埋在越来越多的练习纸中。
3、克服思维定势的影响,培养发散思维能力
在知识迁移能力的形成过程中,既要培养解决类似问题的“定势”,形成知识迁移的一般性规律和方法,又要形成在遇到用习惯方法难以解决的有关问题时能够从其他角度去分析、解决问题的能力。知识的迁移要求对知识呈现的情境和知识转换要灵活处理,而不是生搬硬套。如果变换的'问题样式和情境无法被吸纳入认知结构或已建构的认知结构无法同化这个问题,便要求我们对这个问题进行再处理,再变换或尝试与另一认知结构对接,形成从不同角度分析、迁移知识解决问题的意识和能力。
4、教会学生用正确的方法听课
首先,教师要求学生做好课前准备,包括心理、知识、物质、身体的准备等;
其次,要求学生专心听讲,尽快进入学习状态,参与课堂内的全部学习活动,不要只背结论。要积极引导学生参与数学概念的建立过程,这不仅可使学生理解概念的来龙去脉,加深对概念的理解,而且有利于培养了学生的参与意识。
最后,教师要指导学生养成先看书后做作业的良好习惯。指导学生在做作业之前一定要认真地阅读例题,结合教师课堂讲授,把知识梳理一遍,之后再去做作业,就会少走弯路,既保证了作业质量,又做到了充分的巩固、复习。
5、课外学习
课外学习能有效地使课内所学知识与社会生产实践、生活实际密切地联系起来,帮助同学们加深对课内所学知识的理解,扩大文化科学知识的眼界,拓宽思路,激发求知欲望和学习兴趣,培养自学能力与习惯,增长工作才干。
另外,还要教会学生一些数学方法。如,比较法、线段图法、分析法、归类法等等。指导的形式可以灵活多样,除了上课的潜移默化外,还有如,讲授式、交流式、辅导式等等。
总之,面对新课程改革的挑战,我们必须多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中用数学、理解数学和发展数学,让学生享受“数学学科的快乐”且快乐地学数学。
一、行列式部分,强化概念性质,熟练行列式的求法
在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。
二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用
通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调。此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。
三、向量部分,理解相关无关概念,灵活进行判定
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的`命题。
四、线性方程组部分,判断解的个数,明确通解的求解思路
线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。
五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解
矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。
六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理
二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。
高一数学学习心得:计算
高中涉及到更多的内容,而计算是一项基本技能,对于初中时候的有理数的运算、二次根式的运算、实数的运算、整式和分式运算,代数式的变形等方面如果还存在问题,应该把部分再好好复习巩固一下。若计算频频出现问题,会成为高中学习的一个巨大的绊脚石。
高一数学学习心得:反思
很多同学进入高中后都会在学法上遇到很大的困扰。因为高中知识多,授课时间短,难度大,所以初中时候的一些学习方法在高中就不太适用了。对于高中的知识,不能认为“做题多了自然就会了”,因为到了高中没有那么多时间来做题,因此一定要找到一种更有效地学习方法,那就是要在每次学习过后进行总结和反思。总结知识点之间的联系和区别,反思一下知识更深层的本质。三、预习高一的知识。新课程标准的高一第一学期一般是讲必修1和必修4两本。目前高中采取模块教学,每个学期2个模块。
必修1的主要内容:
集合:数学中最基础,最通用的数学语言。贯穿整个高中以及现代数学都是以集合语言为基础的。一定要学明白了。
函数:通过初中对具体函数的学习,在其基础上研究任意函数研究其性质,如单调性,奇偶性,对称性,周期性等。这一部分相对有一定的难度,而且与初中的联系比较紧。基本初等函数:指数和对数的运算以及利用前面学到的函数性质研究指数函数,对数函数和幂函数。这部分知识有新的计算,并且应用前面的`函数性质学习新的函数。
必修4的主要内容:
三角函数:对于初中的角的概念进行扩充,涉及到三角函数的运算以及三角函数的性质。
平面向量:这是数学里面一种新的常用的工具,通过向量的方法可以方便的解决很多三角函数的问题。这种方法与平面直角坐标系的联系比较多,但与函数有所不同,应注意区别与联系。
三角恒等变换:这部分主要是三角的运算,属于公式很多,运算量也比较大的内容。统观上述高一第一学期的内容可见知识非常多,而且这些知识在高考中的比重也比较大,因此若在高一一开始不能学好,对于后面的学习是会有一定影响的。因此,要考虑到初高中知识的差异,对自己的学法进行改进,最后要适当的预习一下新高一的内容,以期很快的适应高中的数学学习。
有关高一数学学习心得推荐:
一、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
20xx-20xx学年县优质课听课总结及反思
在学校的大力支持下, 20xx年3月20日,我有幸观摩了周倩、张薇薇、李海英、马后峰等八位教师的优质课,通过观摩这几节课,使我受益匪浅。下面谈谈我对这几节课的心得体会:
1.精心设计课堂教学,准备充分
想给学生一滴水,教师就必须具备一桶水。这几天几位教师讲的课就充分印证了这句话。从每位教师的课堂教学中,我们能感受到教师的准备是相当充分的:不仅“备”教材,还“备”学生,从基础知识目标、思想教育目标到能力目标,都体现了依托教材以人为本的学生发展观。对基本概念和基本技能的处理也都进行了精心的设计。
2.注重教学导入
为什么每位讲课的老师都充分为课做准备,但却产生不同的效果呢?这与教师与学生的互动效果是分不开的。有几位老师如张薇薇老师,能把学生的热情充分调动起来,课堂气氛非常热烈,互动效果也很好。引人注目的开场白和活动设计,集趣味性和启发性为一体,不仅能引人入胜,而且能发人深思。一个好的导入可以能使学生集中注意力,产生学习兴趣,觉得数学课有趣,减少焦虑和恐惧心理,重塑自信。
3.注重知识的传授与能力的培养相结合,教学理论联系实际
各位老师都很好的运用了多媒体技术与课程的整和。如马后峰老师在讲到定积分的几何意义时,利用多媒体动画展示直线x=a,x=b,y=0,y=f(x)围成曲边梯形的过程,在视觉上给学生们震撼,使学生们更加深刻的体会定积分和面积的关系。在了解基础知识的基础上,提出问题让学生思考,指导学生去归纳、去概括、去总结,让学生先于教师得出结论,从而达到在传授知识的基础上使学生的能力得到培养的目的。
4.教学过程结构精密,时间分配恰当。
从每一位授课教师的教学过程来看,都是经过了精心准备的,从导入新课到布置作业课后小结,每一句话都很精炼、每一个问题的设置都恰到好处、多媒体设计也充分体现了专业知识的结构体系。每位教师能根据自己学生的`知识水平、认知能力设计教学的各个环节,在知识深难度的把握上处理得很好,基本上都能做到突出重点,突破难点。
5.教师自身的良好素质是上好一堂课的重要前提和基本保证。
我们只有不断的加强学习,不断加强修养才能胜任教育这项工作。各位老师就充分表现了这点,不仅教师基本功十分扎实,语言清晰,语速适中,声音洪亮,而且无论从制作的课件还是上课的技巧来讲,构思非常得好,让学生在这种非常轻松愉快的情景中学习,能够很顺利地完成教学任务。
通过这次听课,使我开阔了眼界,看到了自己的不足。同时我对自己也提出了许多问题去思考,怎样让自己的教学方法更吸引学生?怎样让学生喜欢上课?相信通过自己的不断努力,一定能拉近距离,不断进步。
早些年的时候,是进修八字术数的,刚开始看周易,便率先接触到八八六十四卦,那个时候没有耐心看,觉得演变的头晕脑混的。再加上觉得四柱八字预测得先让来人报“生辰八字”很麻烦,有的.甚至还不知道自己的生辰八字,觉的此项预测术不适合我,所以学了没多久,就跑到奇门遁甲的世界里。然后再奇门遁甲里旁触到“梅花易数”,说是深研究,其实也不过是照卦说卦,相当的死板了。
奇门遁甲的实战中,总结出“申家奇门”的思路,奇门遁甲可以让我“玩的全盘转”,那么梅花易数是不是也可以改变研究策略?扔掉电子书、笔记,来个活学活用?奇门遁甲是风火轮,可以全盘转,那梅花易数能不能把大自然变成“游乐场”?随处可“点”可“用”呢?
上网搜索了有关“梅花易数“的资料,以“梅花易数入门”、“梅花易数如何学习”、“梅花易数笔记”等相关字眼进行搜索,也因此注册了很多易学论坛,为的是下载相关的“梅花易数”资料,看了看,基本上跟我买回来的“梅花易数”书说的一样,更是神秘莫测了,有关的测例也是少的可怜,怪不得“梅花易数”给人感觉那么“深”,那么“玄”了。
其实那些资料“看了等于白看”,根本不会有什么长进,顶多教你个怎么排卦而已,解卦的过程你根本摸不到。“梅花易数”分体用卦,体用两个卦变来变去,最后一锤定音出了个变卦,而变卦并不是事情的最终结果,最经典的部分在于那变化之间。6个爻再加上六个爻,上卦加下卦,单独来看又是八卦中的一个小卦。就是两个小碗跟一个纸团的游戏,类似考眼力的游戏。
一、通过新课标的解读,使我感受到:
数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考;要注重培养学生良好的学习习惯、掌握有效的学习方法。爱因斯坦说:“兴趣是最好的老师。”兴趣是学生学习中最活跃的因素,因此,在数学教学中创设生动有趣的情境,如运用做游戏、讲故事、直观演示等,激发学生的学习兴趣,让学生在生动具体的情境中理解和学习数学知识。一个好的教学情境可以沟通教师与学生的心灵,充分调动学生的学习积极性,使之主动参与到学习活动中。使学生把学习作为一种乐趣、一种享受、一种渴望,积极参与数学活动。
二、通过新课标的解读,使我感受到:
教师的人生,应该有创新精神。年年春草绿,年年草不同。而我们的学生亦是如此,因为人与人之间存在差异,所以教育既要面向全体学生,又要尊重每个学生的个性特点。我们应因材施教,目的是为了调动每一个学生的学习积极性、主动性,让每一个学生主动地、活泼地发展。在组织教学中把整体教学、分组教学与个别教学结合起来;在教育过程中,贯彻个别对待的原则,讲求一把钥匙开一把锁。学生们像一朵朵稚嫩的小花苗儿,但每一颗都有与众不同的可人之处。因此便更需要我们用不同的方法去浇灌、呵护,才得以使他们健康成长。
三、通过新课标的解读,使我感受到:
学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。在数学教学中要从学生熟悉的生活背景引入,让学生感受到数学无处不在,使学生对数学产生亲切感,激发他们到生活中寻找数学知识。《数学课程标准》还指出:“提倡让学生在做中学”。因此在平时的教学中,我力求领悟教材的编写意图,把握教材的`知识要求,充分利用学具,让学生多动手操作,手脑并用,培养技能、技巧,发挥学生的创造性。数学源于生活。因此我教学时必须紧密联系实际,注重对数学事实的体验,让学生在生活中,实践中学习数学,从而体验学习数学的价值。
四、通过新课标的解读,使我感受到:
学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学。应建立评价目标多元、评价方法多样的评价体系。评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我,尽力信心。