首页 > 更多文库 > 1号文库 > 详情页

《数学广角》观课报告

2022-12-11 00:40:34

千文网小编为你整理了多篇相关的《《数学广角》观课报告》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《《数学广角》观课报告》。

第一篇:数学广角推理评课稿

冯老师在教学本节课时,以直观的操作活动为主,创造性地使用教材资源,为学生创设了独立思考、自我体验、自我探索、合作交流的学习情境,教学过程民主、平等、宽松、愉快。本节课条理清楚,层次分明,我认为主要有以下几方面的亮点:

1、充分发挥多媒体辅助教学的优势

教师大胆改编教材,将我国地图引入课堂,一步步找到山西、阳泉、郊区的行政区划图,然后从地图的着色问题入手展开研究活动,让学生感觉到了制作地图也要用到数学知识,体会到数学在生活中的价值。

2、以学生为主体,注重学生自主探究。

整节课,教师带领学生通过观察、操作、交流等活动,给了学生充分的探究时间,交流时充分尊重学生的意见,这些都体现了学生的主体地位。

3、注重活动前的指导,对活动预设充分。

在出示活动要求后,让学生自己说说涂色时注意什么,学生互相补充,明确了要求,审题能力得到了提高。由于教师预设到涂色时间比较长,因此明确活动要求后激励学生比比谁涂得快。学生跃跃欲试,加快了活动速度。在展示作品时教师故意出示重复和遗漏的作品,引导学生分析,让学生真正感知到有序思考的好处。

4、培养学生多角度思维。

教师在学生活动后的质疑引发学生的思考:想不想知道怎样很快找到所有涂法儿不重复不遗漏呢?教师介绍了两种方法,定位法、交换法,学生在有了前面活动的基础,理解起来相对容易了,

5、教具准备充分,便于直观操作观察,可见备课的用心。

第二篇:数学广角推理评课稿

《集合问题》是小学三年级上册数学广角第一课时的内容,这个内容是日常生活中应用比较广泛的数学知识,本节课涉及到一种最基本的数学思想方法:集合思想。集合问题具有高度的抽象性,在这里由于学生初次接触,对他们来说既是一个认知的跨越,也是一个思维的跨越。因此从教学内容到课型的特点,都是对教师的挑战。下面我从教学效果这一角度谈一谈我对这节课的看法:

一节课,教学效果的优劣最终落脚点都要落到学生身上。从本节课的整个课堂教学来看, 老师在教学目标的定位上、对教材的处理、调动学生学习主动性、落实新课标理念等方面都有成功之处。在教学中,林老师为学生创设了具有启发性的教学情境,大胆放手,使学生在实践、探索与交流的数学活动过程中,经历集合图产生的.过程,让学生在体验和建构中理解集合图的本质,突破教学的难点。具体表现在以下几个方面:

根据小学三年级学生的认知水平,本节课只要让学生初步体会集合思想,能利用集合的思想方法解决简单的实际问题,在解决实际问题中进一步体会集合思想即可。要想真正理解集合图的意义,必须经历集合图的建构过程,即集合图是怎样产生的,这是本节课的关键点也是重难点。老师整堂课也就是定位在让学生初步认识简单的韦恩图,通过现场交流、师生辩论、事实确认来引发认知冲突,进而让学生经历探究并获得体验,经历知识的形成过程,符合三年级学生的认知规律和认知水平,整堂课学生学得都比较自然和轻松,教学目标达成度较理想。

集合思想的重要表现形式是韦恩图。教师在教学中并未直接教学,而是采用主动探究的形式,在学生一次一次排列调整的活动过程中,韦恩图的模型渐渐浮现。林老师在此过程中起了适当的点拔作用。学生经历了韦恩图产生的过程中初步理解了对韦恩图的认识过程,引导学生用各种方法计算总人数。通过这样的设计,让学生经历韦恩图的产生过程,并充分感知和体验韦恩图的作用,把具体问题上升到抽象,找到解决问题的捷径,而且整个过程不断有思维的碰撞,环环相扣,扎实有效,使教学目标真正落到了实处。探讨之处:在设计一个活动时,没有想到:体现了什么数学思想,怎样才能把数学思想活动起来,而不是停留在形式上、表面上。

总之,数学课不仅是让学生学数学,更重要的是让学生欣赏数学、体验数学的价值,从欣赏和体验中去感悟数学道理、培养数学素养。本节课学生在学习活动的参与中,真正的做到了自主探索、不断创新,体验到了数学学习的快乐与成功。

第三篇:数学广角《植树问题》说课稿

人教版五年级上册数学广角《植树问题》集体备课稿

沙镇中心校 主备人:德胜

一、单元教材分析

“植树问题”是人教版五年级上册“数学广角”的内容,本单元内容由原实验教材四年级下册移来,例3调整为封闭曲线上的植树问题。本单元共有三个例题,例1是直线植树中两端都栽的情况,例2是直线植树中两端都不栽的情况,例3是封闭曲线上植树问题。考虑到教学内容的需要,教学本部分知识时重点就是借助图画方法和“一一对应”“化繁为简”等方法解决问题。

二、本单元教学目标

1.引导学生通过观察、猜测、试验、推理等活动,初步体会植树问题的模型思想。2.通过画线段图初步培养学生探索解决问题有效方法的能力。

3.让学生尝试用植树问题的方法来解决实际生活中的简单问题,培养学生解决实际问题的能力。

三、本单元教学重点、难点

教学重点:建立“树的棵树与间隔数”的模型思想。

教学难点:学会运用图画方法和“一一对应” “化繁为简”的思想解方法决问题。

四、教学措施

1.例1:一条线段上植树(两端都栽)

植树问题教学的重点是解决点和间隔的关系,建立相应的模型。但是当数据比较大时,不利于学生发现规律,所以教材编排上体现了化繁为简和建模的思想。

例1是关于一条线段上的植树问题并且两端都要栽树的情况,让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历解决问题的过程。(1)渗透化繁为简的思想,经历解决问题的过程

通过学生的话“100 m太长了,可以先用简单的数试试”渗透化繁为简的解决问题的方法,接下来的编排渗透了“猜测—探索—归纳—应用”的解决问题的策略。(2)重点培养学生借助线段图建立数学模型的能力

教材呈现学生用画示意图或线段图的方法帮助思考,通过观察两端都栽树的示意图或线段图,把分割点和栽树的棵树一一对应起来,发现并初步总结栽树的棵数与间隔数之间的关系。再让学生在30 m、35 m上加以验证,从而建立起一条线段两端都栽这类植树问题的数学模型。从而找到解决问题的方法。

2.例2:一条线段上植树(两端都不栽)例2是关于一条线段的植树问题的另一种情况,即两端都不栽树的情况。教材继续通过画线段图的方法帮助学生分析、理解,找出一般规律来解决问题,突出学生的迁移能力培养。

有了例1的基础,可以放手让学生独立思考。学生自然会想到借助线段图来分析,教材呈现学生画线段图进行分析,发现当两端都不栽树时,植树的棵数比间隔数少1,然后利用发现的规律解决例题的问题。

一端栽另一端不栽的情况放在“做一做”第2题让学生自己探究。通过画线段图,可以与例

1、例2的对比来获得对这一基本模型的理解,同时运用发现的规律解决要求的问题。

3.例3:封闭曲线上植树(1)突出画图的策略

例3是在一条首尾封闭的曲线上植树的问题。编排思路和例1相同,继续渗透化繁为简的思想和画图的策略。借助图示探索规律,建立模型。

(2)注重模型的对比与沟通

通过小精灵的问题“如果把圆拉直成线段,你能发现什么?”启发学生联系已有的知识找出这种植树问题的规律,即栽树的棵树正好等于间隔数,也就相当于一条线段上植树的一端栽另一端不栽的情况,渗透转化的数学思想。

五、教学建议

1.经历建模的过程,感悟思想方法

“数学广角”的教学目的主要是让学生体验知识的形成过程和感悟数学思想方法。具体到本单元,教学时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。比如例1的教学,可以让学生经历猜想、实验、归纳、推理的过程,渗透简单的化归、数形结合、一一对应、模型、推理等数学思想,激发学生学习数学的兴趣。

2.突出画图(线段图)的策略

几何直观是课标的核心概念之一,帮助学生养成画图的习惯是非常重要的。本单元通过画示意图或线段图来解决植树问题,可以更直观理解、更好地发现规律,建立模型,找出解决问题的方法。

另外,学生在学习中容易将两端都栽、一端栽另一端不栽、两端都不栽三种情况弄混。事实上,学生不用记每种模型的结论,遇到问题,只要画个线段图,问题就迎刃而解了,从而体会到画图策略的价值。

推荐专题: 小学数学教师述职报告 《数学广角》观课报告

相关推荐
本站文档由会员上传,版权归作者所有,如有侵权请发送邮件至89702570@qq.com联系本站删除。
Copyright © 2010 - 千文网移动版
冀ICP备2020027182号