千文网小编为你整理了多篇相关的《《大数据:技术与应用》学习心得(范文2篇)》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《《大数据:技术与应用》学习心得(范文2篇)》。
大数据时代下数据挖掘技术与应用
【摘要】人类进入信息化时代以后,短短的数年时间,积累了大量的数据,步入了大数据时代,数据技术也就应运而生,成为了一种新的主流技术。而研究数据挖掘技术的理念、方法以及应用领域,将对我国各个领域的未来带来更多的机遇和挑战。本文就大数据时代下数据挖掘技术与应用进行探究。
【关键词】大数据,数据挖掘,互联网
数据挖掘是一门新兴的学科,它诞生于20世纪80年代,主要面向商业应用的人工只能研究领域。从技术角度来看,数据挖掘就是从大量的复杂的、不规则的、随机的、模糊的数据中获取隐含的、人们事先没有发觉的、有潜在价值和知识的过程。从商业角度来说,数据挖掘就是从庞大的数据库中抽取、转换、分析一些潜在规律和价值,从中获取辅助商业决策的关键信息和有用知识。
1.数据挖掘的基本分析方法
分析方法是数据挖掘的核心工作,通过科学可靠的算法才能实现数据的挖掘,找出数据中潜在的规律,通过不同的分析方法,将解决不同类型的问题。目前常用的方法有聚类分析、特征数据分析法、关联性分析等。
1.1聚类分析法。简单来说聚类分析就是通过将数据对象进行聚类分组,然后形成板块,将毫无逻辑的数据变成了有联系性的分组数据,然后从其中获取具有一定价值的数据内容进行进一步的利用。由于这种分析方法不能够较好的就数据类别、属性进行分类,所以聚类分析法一般都运用心理学、统计学、数据识别等方面。
1.2特征性数据分析法。网络数据随着信息时代的到来变成了数据爆炸式,其数据资源十分广泛并且得到了一定的普及,如何就网络爆炸式数据进行关于特性的分类就成为了当下数据整理分类的主要内容。此外还有很多方法都是通过计算机来进行虚拟数据的分类,寻找数据之间存在的普遍规律性完成数据的特性分析从而进行进一步分类。
1.3关联性分析法。有时数据本身存在一定的隐蔽性使得很难通过普通的数据分析法进行数据挖掘和利用,这就需要通过关联性分析法完成对于数据信息的关联性识别,来帮助人力完成对于数据分辨的任务,这种数据分析方法通常是带着某种目的性进行的,因此比较适用于对数据精准度相对较高的信息管理工作。
2.数据挖掘技术的应用
数据挖掘技术的具体流程就是先通过对于海量数据的保存,然后就已有数据中进行分析、整理、选择、转换等,数据的准备工作是数据挖掘技术的前提,也是决定数据挖掘技术效率及质量的主要因素。在完成数据准备工作后进一步对数据进行挖掘,然后对数据进行评估,最后实现运用。因此,数据挖掘能够运用到很多方面。如数据量巨大的互联网行业、天文学、气象学、生物技术,以及医疗保健、教育教学、银行、金融、零售等行业。通过数据挖掘技术将大数据融合在各种社会应用中,数据挖掘的结果参与到政府、企业、个人的决策中,发挥数据挖掘的社会价值,改变人们的生活方式,最大化数据挖掘的积极作用。以教育行业为例,探究数据挖掘技术在高校教育教学活动中的应用。
2.1在高校管理中的应用。数据挖掘技术在高校管理的内容主要包括:高校招生录取工作、贫困生选定以及优秀生评定等。高校每年的招生工作是学校可持续发展的重要环节,直接影响到高校教学质量以及发展情况。比如数据挖掘技术在高校管理中的应用主要是对学生高考成绩、志愿填报、以及生源来源地等多方面信息进行整理分类汇总。具体步骤是通过进行数据的收集和预处理,建立相关数据模型,采用分类算法,提取和挖掘对用户有用的信息,然后进行数据挖掘的数据存储形式。目前高校数据挖掘技术应用的范围比较广泛,由于高校管理内容比较复杂,因此在其管理内容的每个小部分也开始利用数据挖掘技术进行管理,比如学生成绩管理,课堂教学评价系统等。
2.2在高校课堂教学评价中的应用。数据挖掘技术在高校课堂教学评价系统中的应用主要也是利用关联分析法。首先先对数据进行预处理工作,数据的预处理是数据挖掘技术的关键步骤,并且直接影响着数据挖掘技术的应用效率。数据预处中要将教师的基本信息、教师教授课程以及教师的职称、学历、学生信息以及学生课表相关信息进行数据初始记录。对于教师的评价内容根据高校自身的条件和需求而定,学校教学评价管理部门登录学校教务系统后,将学生所选择的选项对应转换为教师的分值,通过计算机计算总分后得出教师的学期得分。学生对于教师教学的评价在一定程度上也反映了自己的学习情况,如对教师的评价为零分,则说明学生也否定了自己的学习效果。2.3在高校学生信息管理系统中的应用。高校学生信息管理系统中管理要素主要是学校的领导、任课教师、学生以及家长。系统的功能要包括:对不同的用户设置不同的使用权限;对学生的基本信息以及学生浏览管理网站的记录要做到明确记录;各个学院不同专业的学生课程要能准确公布并允许学生根据实际情况修改;成绩管理要能实现大批量添加及修改;还有比如评优活动、党务管理等具体功能。数据挖掘技术在高校学生信息管理系统中的应用主要是利用决策树的方法。学生信息管理的基本数据就是学生入学时填写的基本信息表,内容包括学生的姓名、学号、考勤以及学习成绩等,这些都是学生特有的属性,学生信息管理利用决策树方法就是将学生的这些属性作为决策元素,监理不同的决策节点,实现对学生全方位的考核和评价,完整的了解到每位学生的具体信息。
2.4高校图书馆信息系统中的应用。数据挖掘技术最基本的应用就是通过对现有的数据进行分析来了解学校图书馆现有资源利用情况,为图书馆的未来建设提供可靠数据。数据挖掘技术能够使图书馆资源得到极大程度的优化整合。比如数据挖掘技术可以对检索记录进行整理,将手工数据转变为电子数据记录。其最大的优势就是利用数据挖掘技术更加全面的分析总结数据库资源,帮助图书馆管理人员对于图书馆信息的补充和调整,还能够为高校图书馆的馆藏工作建设提供有效的引导。数据挖掘还能应用于图书馆的多媒体数字资源,多媒体数据挖掘技术能够更为快捷和准确的为读者提供相应的服务。
3.结语
数据挖掘技术是近几年新产生的网络技术,可是它的广泛应用性受到了很多公司以及研究人员的喜爱。这些年来,伴随着时间的推移以及网络技术的不断发展大数据挖掘技术不断的被更新,开发,而且在金融、管理、教学等行业中都得到了广泛的应用。我相信随着网络技术的不断发展,大数据挖掘技术的应用面将会越来越广。
【参考文献】
[1] 董彩云,曲守宁.数据挖掘及其在高校教学系统中的应用 [J].济南大学学报(自然科学版),2004(1): 65-68.[2] 陆川,王静静.数据挖掘技术在高校教学管理中的应用研究[J].北京:电脑开发与应用,2009,3.[3]《中国电子科学研究院学报》编辑部.大数据时代[J].中国电子科技研究院学报,2013(01):41-43.[4]魏娟,梁静国.基于数据挖掘技术的企业客户关系管理(CRM)[J].商业研究,2005(07).
4月1日上午,“新时代学习大讲堂”第二期时代前沿知识专题讲座贵阳举行。中国科学院院士,北京理工大学党委常委、副校长,贵州省大数据产业发展研究院院长梅宏围绕大数据技术与应用作专题报告。
本次讲座上,梅宏院长从“大数据是什么”、“如何应对大数据”、“如何应用大数据”、“大数据现状和思考”等多个方面,全方位、多角度、立体式地解读了大数据的技术与应用,语言生动、内容详实,既传达了党中央的精神,又谈了自身学习体会,既解读了大数据发展的规律,又提出了学习领会的意见建议,为贵州省各级领导干部、国家机关、公职人员学习互联网知识,熟练掌握大数据知识指出了路径、传授了方法。
通过学习,我们知道信息时代的到来,感受到的是技术变化日新月异,随之而来的是生活方式的转变,我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。
今天,信息是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据是描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。
在大数据时代,大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理。小数据停留在说明过去,大数据用驱动过去来预测未来。数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。大数据是在互联网背景下数据从量变到质变的过程。小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的学习空间、可以有更精准的决策判断能力这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。
李再勇副省长在主持讲座时指出,此次专题讲座既是一次培训辅导,也是一次了解大数据、弄懂大数据、运用大数据的好机会,大家要认真学习、深刻领悟,将大数据知识运用到实际工作中。并要求,广大党员干部一是要精准把握总书记关于大数据发展系列重要讲话精神的核心要义,要利用大数据在商用、政用、民用等多方面“聚通用”协同发展;二是要以大数据发展重构经济体系,努力实现贵州经济高质量发展,要以供给侧改革为主线,以大数据发展加快对传统产业结构和产业体系的重构、重组,实现质量、效率、动力三大变革;三是要以大数据发展提升治理体系、治理能力,不断推进政府管理和社会治理模式的创新,要在数据重构中找到适合人类社会管理的规律。四要以大数据发展促进民生发展,不断提升公共服务均等化、普惠化、便捷化,要通过大数据进一步推动共享发展,共享发展的平台和路径以及技术,加快共同富裕的步伐。
推荐专题: 《大数据:技术与应用》学习心得