千文网小编为你整理了多篇相关的《六年级数学下册解比例教学设计》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《六年级数学下册解比例教学设计》。
教学目标:
1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。
2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。
3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。
重点、难点:
1.教学重点:理解、掌握杠杆平衡的规律。
2.教学难点:让学生综合应用所学的知识和方法解决实际问题。
教学准备:
竹竿,棋子,塑料袋(多媒体课件)
教学过程
一、准备材料,导入活动:
1.检查课前布置的制作工具(简单杠杆)的作业。
学生对照制作要求,自查和同组互相检查。
小黑板或媒体出示制作要求:
(1)准备的竹竿长1m,尽量做到粗细均匀。
(2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。
(3)从中点处每隔8cm做一个刻度记号,尽量等距离。
拿出准备好的棋子和塑料袋。检查大小是否一样。
2.揭示课题:有趣的平衡(板书)
二、动手实践,探索规律
1.活动一:探索特殊条件下竹竿保持平衡的规律:
(1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?
①学生思考,回答问题。“两边所放的棋子要同样多。”
②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。
(2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?
①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”
②演示。如:
左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。
(3)小结:
你有什么体会?
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
2.活动二:探索在一般条件下竹竿保持平衡的规律(A)
(1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?
①也放4个棋子行不行?会产生什么结果?
②应该放几个?
“放3个。”
(2)如果左边的塑料袋在刻度6上放1个棋子。
①右边的塑料袋在刻度3上放几个呢?
学生交流,各自说出自己的见解。
②右边的塑料袋在刻度2上呢?
学生不难得出结果,放3个。
③右边的塑料袋在刻度1上呢?
学生不难得出结果,放6个。
(3)小结:
师:你有什么体会?
左右两边棋子个数与刻度数的积要相等。
3.活动三:探索在一般条件下竹竿保持平衡的规律(B):
(1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?
(2)实验活动:
①学生动手进行实验活动。
②将实验结果记录下来。
③教师提供表格,引导学生展开活动。
右刻度
所放棋子数
乘积
(3)汇报结果。
学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
(4)从表中你发现刻度数和所放棋子数成什么比例?
学生观察表中两个量的变化情况,不难发现这两种量成反比例
三、应用规律,体会揣摩
1.基本练习:
母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?
提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是x分米。可以得到方程
60x=12×15
解方程得x=3
答:她坐的地方距支点3分米才能保持平衡。
2.综合练习:
桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?
提示:(1)根据臂长和质量成反比例
(2)先确定每个托盘中所放砝码的总质量,在确定臂长。
四、回顾整理,反思提升
1.谈收获。
师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?
2.评价。
师:你对自己这节课的表现满意吗?
可采取学生自评,互评,老师评价的方式进行。
板书设计:
有趣的平衡
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
作业设计
基础:
1.用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?
综合:
2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?
提示:
(1)可以像例题中一样,用列表的方法做。
(2)根据臂长与质量成反比,列方程求解。
教学目标:
1、知道什么叫做解比例。
2、会根据比例的性质或比例的意义正确地解比例。
3、培养学生认真书写和计算的习惯。
过程与方法:
1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。
2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
教学重点:
解比例
教学难点:
解比例的方法。
突破方法:
引导学生小组合作探究、交流,掌握解比例的根据。
教法与学法:
教法:创设问题情境,引导发现。
学法:独立思考,自主探究。
教学准备:ppt课件。
教学过程:
一、复习准备
1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)
2、出示:应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。6:10和9:152:80和5:200
3、利用比例的一些知识,还可以帮助我们解决一些实际问题。
出示比例:3:9=():15
师:这个比例中的两个外项和两个内项分别是多少?
(外项是3和15,一个内项是9,另一个内项未知的。)
师:你能利用比例的知识求出这个未知的内项吗?
可以根据比例的意义:比值相等的两个比可以组成比例。因为3:9=1/3,想():15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。
师:像这样,求比例中未知的项,叫做解比例。(课件出示)。
今天这节课就利用比例的有关知识解比例。(板书课题)
二、探索新知
1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。
2、出示例题,教学例2。学生读题。
师:1:10是谁与谁的比?
教师随学生的回答板书:埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10。
师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。)师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)
师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)
师:这样知道比例中的任何三项,我们就可以求出这个比例中的另外一个未知项。怎样根据这个比例中的三项来求另外一个未知项呢?这就要用到我们前面学习的比例的基本性质。我们把埃菲尔铁塔模型的高度设为x米。可以写成一个比例,谁来说说看?
板书:解:设这座埃菲尔铁塔模型的高度是x米。
X:320=1:10
师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?
为什么可以写成这样的等式呢?引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的积的等式。
师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)
师:我们知道这样含有未知数的等式,叫做――方程。同学们会解方程吗?把这个方程解出来。(在全班学生独立解答的同时,抽一个学生在黑板上解答。)
师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。
那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们
知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)
出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是不是能成比例.)或比例的基本性质来检验。
解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X――再依据比例的意义列出比例式――然后根据比例的基本性质把比例转化为方程――最后解方程)
3、巩固例2练习
(1)出示练习题p44第8题
(2)学生独立完成,二名学生板演讲解分析
(3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数X)
4、这个比例你能解答吗?出示例3:1.5/2.5=6/X
(1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)
(2)解这种比例时,要注意些什么呢?(找出比例的外项、内项),让学生指出这个比例的外项、内项
(3)学生独立练习,求出未知项
(4)同学间互相交流,发现问题及时解决
5、指导学生梳理教材的知识点,完成p42“做一做”。
三、巩固练习
课件出示基本练习和提高练习,学生独立完成,指名板演。
四、本课小结
这节课主要学习了什么内容?
五、布置作业
p44第8题、第9题、第10题
板书设计
解比例
例2模型高度:原塔高度=1:10
未知项(x)320米
解:设这座模型高x米。
X:320=1:10
10X=320x1
X=320÷10
X=32
答:这座模型高32米。
教学反思:
解比例一课是在学习了比例的基本性质后学习的,教学解比例之前,教师先复习根据比例的意义和除法中各部分的关系可以求出比例里的未知项:然后告诉学生,还可以根据比例的基本性质来求比例里的未知项。所以,在实际授课的过程中,由于学生提前对这一部分进行了预习,对比例的意义和比例的基本性质也掌握的很扎实,所以对授课内容比较了解,教学组织和实施都比较顺利。遗憾的是,虽然扶放结合的课堂效果很好,利于大部分学生掌握知识,但是如果对例2的教学大胆放手,让学生直接板演并讲述思路,然后教师从旁点
一、填空20分
1、2.04千米=()米3.6时=()分
5吨300千克=()吨0.4立方米=( )立方分米
2、根据3×4=2×6这个等式,能写成( )个比例式。
3、出粉率一定,面粉的重量与小麦的重量成( )比例关系。
4、这是()比例尺,它表示图上()的距离,相当于实际距离()千米。
5、在一个比例中,两个外项互为倒数,其中一个内项0.3,另一个内项是( )。
6、如果5x=y(x不为0),那么x和y成()比例。
7、一个长5厘米,宽2厘米的长方形,按1:3的比例尺放大之后,长应画( )厘米,宽应画( )厘米。
8、一个零件长2.4厘米,在设计图上画12厘米,设计图的比例尺是()。
9、把数值比例尺1:5000000改写成线段比例尺是()。
10、配置一种盐水,用5克盐需加水200克,现有水800克,需盐()克。
二、选择题10分
1、下面()组中的两个比不能组成比例。
①2:3和6:9②0.01:6.2和0.5:310③12:13和0.8:0.6
2、下面的量中,()组不能成比例
①小明的年龄和他的体重。②正方形的.周长和边长
③总价一定,单价和数量。
3、手表厂的技术人员设计新型的手表时,想把手表的零件放大到原来的50倍,则画图时选用的比例尺是( )。
①1:50②50:1③1:500000
4、在4:9=20:45中,比例的外项是()。
①4和9;②9和20③20比45
5、星光运动场的长是108米,宽是64米,画在练习本上,比例尺比较合适的是( )
①1200②12000③110000④140000
三、判断10分
1、图上距离总比实际距离小.( )
2、被除数一定,商和除数成反比例。( )
3、由两个比组成的式子叫做比例。()
4、因为5a=6b所以ab=56。()。
5、为了计算简便,比例尺通常写成前项是1的比。()
四、解比例(12分)
X:24=3:88.1:x=1.8:36
12:23=6:x4.81.6:x2
2、计算下面各题,能简算的要简算。(18分)
25×32×1.25713×217+613÷17223÷(1-58)
12+13-12+131.8×(5.7-3.44÷0.8)0.3×2÷0.3×2
五、动手操作:5分
1)、画出三角形向下平移3格后的图形。2分
2)、画出三角形按2:1放大后的图形。3分
六、解决问题28分
1、修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?(5分)
2、甲乙两地在比例尺是1:20000000的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长?(5分)
3、用边长是900cm2的方砖铺地需要2000快,如果改用边长是40厘米的方砖铺地,需要多少块?(5分)
4、一个机器零件的长度是0.5厘米,在比例尺1:40的图纸上,它的长度是多少?(5分)
5、在实验小学新校区的规划图上,长方形的长是28厘米,宽是22厘米,如果规划图的比例尺是1400。这个操场实际占地是多少平方米?在操场的四周建造围栏,围栏长多少米?(8分)
一、填空:
1、在比例中,两个内项的积是6,其中一个外项是23,另一个外项是()。
2、路程和时间的比的比值是(),如果它一定,那么路程和时间成()比例。
3、在工作效率、工作时间、工作总量这三个数量中,当()一定时,()和()正成比例。
4、如果y=5x,那么x和y成()比例。
5、一幅地图上用5厘米表示实际距离20千米,这幅地图的比例尺是()。
6、1.2千克∶250克化成最简整数比是(),比值是()。
7、一个三个角形三个内角度数的比是1∶4∶1,这是一个()三角形
8、如果7x=8y,那么x∶y=()∶()
9、大圆的半径与小圆半径的比是3∶1,则大圆的面积是小圆的面积的()倍。
10、五个完全相同的小长方形刚好可以拼成一个如图的大长方形,,那么小长方形的长与宽的比是(),大长方形的长与宽的比是()
11、小华身高1.6米,在照片上她的身高是5厘米。这张照片的比例尺是()。
12、甲数是乙数的2.4倍,乙数是甲数的()(),甲数与乙数的比是()∶(),甲数占两数和的()()。
13、男生人数比女生多20%,男生人数是女生人数的()(),女生人数与男生人数的比是()∶(),女生比男生少()()。
14、已知甲数的16相当于乙数的15,那么甲数的一半相当于乙数的()
二、判断题:
1、小红的身高和体重总是成比例。……………………………()
2、成正比例的.量,在图像上描的点连接起来是一条曲线。…()
3、比例尺是一个比。……………………………………………()
4、实际距离一定比相对应的图上距离要大。…………………()
5、21∶7不论是化简还是求比值,它的结果都是等于3。…()
三、选择题:
1、不能与3,6,9组成比例的数是()
(1)2(2)12(3)18
2、把1.2吨∶300千克化成最简整数比是()
(1)1∶250(2)1200∶300(3)4∶1(4)4
3、把5克盐放入50克水中,盐和水的比是()。
(1)1∶9(2)1∶8(3)1∶10(4)1∶11
4、下列几总量中,不是成反比例的量是()。
(1)路程一定,速度和时间(2)减数一定,被减数和差
(3)面积一定,平行四边形的底和高
四、先化简比,再求比值:
6.4∶8= 16∶23= 0.375∶0.625= 8∶89=
五、解比例
35∶X=13∶2X∶5=0.46∶4.618111=X222
1.2x=451.25∶0.25=x∶1.634∶x=3∶12
六、根据条件,先判断题中所给的是哪两种相关联的量,它们成什么比例,如成比例再写出等式。
(1)一台织袜机3小时织39双袜,照这样计算,5小时可织65双。
(2)小明从家走到学校,每分走60米,15分可以到达,如果每分走50米,18分可到达。
(3)一辆汽车行驶500千米消耗汽油60千克,再行驶200千米,又消耗汽油24千克。
七、聪聪在同一时刻测量了直立在太阳下的四根竹竿的影长,结果如下:
竹高(米)0.20.50.81
影长(米)0.411.62
(1)竹竿的高度与影长之间成()关系。
(2)如果聪聪在这一时刻测得一根竹竿得影长为0.9米,那么这根竹竿得高度为()米。
八.应用题
1、一个半径长是4毫米的圆形零件,画在一幅比例尺是25∶1的图纸上,它的图上半径是多少厘米?
2、把280棵树苗栽在两块长方形地上,一块长15米,宽8米;另一块长12米,宽4米,如按面积大小分配栽种,这两块地分别要栽多少棵?
3、配制一种农药,其中药与水的比为1∶150。
①要配制这种农药755千克,需要药和水各多少千克?
②有药3千克,能配制这种农药多少千克?
③如果有水525千克,要配制这种农药,需要放进多少千克的药?
4、下图的比例尺是求这块梯形地的实际面积。
5、给一座房屋的地面铺方砖,用边长5分米的方砖需要2000块,若改成边长4分米的方砖需用多少块?
6、水泵厂原计划每月生产120台水泵,半年完成任务,实际提前两个月完成,平均每月生产多少台水泵?
7、在图书馆借阅图书的期限为10天,10天后要按每天每册0.5元收取服务费。小明借了一本故事书,如果每天看5页,16天能全部看完。请你帮他算一算,他至少每天要看几页才能准时归还而不必交延世服务费?
8、威海市某化工厂六月份计划生产消毒液10000千克,前12天生产了4200千克,照这样的工效,全月能完成消毒液的生产任务吗?
9、有一种小瓶装消毒液净重50克。小明妈妈买回8千克瓜果,现需将这些生吃的瓜果进行消毒,取出10克消毒液需加水多少千克?
九、将下面两题分别列出二种不同算式。
1、学校里有16棵李树,李树的棵数是桃树的23,两种树共有多少棵?
①②
2、粮店运进大米和面粉的质量比是7∶4,已知大米比面粉多运来450千克,运进大米、面粉共多少千克?
①②
十、用不同的方法解答。
1、修一条公路,总长124千米,前20天修了15.5千米。照这样计算,修完这条公路还要多少天?
想:照这样计算说明()定。()和()成比例。
解法一:设修完这条路还要X天才完成。
解法二:设修完这条路一共要X天。
2、一辆汽车从甲地开往乙地,每小时行50千米,6小时可以到达乙地,如果每小时行60千米,可提前几个小时到达?
解法一:设可提前x小时到达解法二:设提速后x小时到达乙地
3、一套课桌椅的价钱是105元,其中椅子的价钱是课桌的57。椅子的价钱是多少元?(用不同的知识解答)
4、枫叶服装厂接到生产一批衬衫的任务,前5天生产600件,完成了任务的40%。照这样计算,完成这项任务一共需要多少天?(用不同的知识解答)
教案设计
设计说明
图形的放大与缩小是比的实际应用。根据《数学课程标准》中“要培养学生的应用意识”的理念,本节课在教学设计上积极引导学生用数学的眼光看待生活中的放大与缩小现象。为学生提供充分的探索空间,培养学生的空间观念。基于以上教学理念,本节课在教学设计上有以下特点:
1.联系生活实际,体会图形放大与缩小的应用价值。
教育家卢梭认为:教学应让学生从生活中,从各种活动中进行学习,通过与生活实际相联系,获得直接经验。因此,在教学中,注重数学与生活的联系,有效利用教材中的图片,使学生了解无论是照相还是用放大镜看书、用投影仪放大图表,都离不开图形的放大与缩小知识,这部分知识有很强的实用价值。
2.在观察、操作中理解图形放大与缩小的意义和方法。
在数学教学中,让学生经历观察、操作、交流的过程,可以帮助学生获得直接的感性认识,有利于学生对知识的理解。基于以上认识,教学中,注意引导学生借助对例题的探究,弄清图形放大与缩小的意义和方法,并能在方格纸上按一定的比画出放大与缩小后的图形,使学生认识到把一个图形按一定的比放大或缩小,只要把图形的各边按一定的比放大或缩小即可。同时,也使学生认识到把一个图形按一定的比放大或缩小后,只是图形的大小改变了,形状没有发生变化,从而真正理解并掌握图形的放大与缩小的意义。
课前准备
教师准备 PPT课件 纸卡
学生准备 方格纸
教学过程
情境导入
1.观察、感受图形的放大与缩小。
(1)观察、感受。
①出示写有“图形的放大与缩小”的纸卡。
提问:纸卡上写的是什么?
(纸卡上的字为小5号字,学生跃跃欲试后会有些失望,因为看不清)
②把纸卡放到展台上,调整缩放键,逐渐调大。
提问:纸卡上写的是什么?
生抢答:图形的放大与缩小。
(2)引导学生思考。
师:为什么纸卡上的字之前看不清,而现在看清了呢?
生:因为字被放大了。
2.结合生活实际,导入新课。
(1)过渡:生活中经常会遇到图形的放大与缩小现象,下面就让我们一起来感受一下图形的放大与缩小。
(课件出示教材59页主题图)
这些现象中,哪些是把物体放大?哪些是把物体缩小?
预设
生1:图1是把物体缩小。
生2:图2、图3、图4都是把物体放大。
(2)导入新课。
今天,就让我们从数学的角度一起来探究图形的放大与缩小现象。(板书:图形的放大与缩小)
设计意图:创设一个感受图形的放大与缩小的情境,激发学生从数学的角度探究图形的放大与缩小现象的兴趣,使学生在观察、体验中初步感知图形的放大与缩小。
探究新知
1.探究把图形放大的意义和方法。
(1)课件出示教材60页例4。
(2)思考、交流。
提问:“按2∶1放大”是什么意思?
生:“按2∶1放大”就是把图形的各边的长放大到原来的2倍。
(3)画图方法。
①提问:以正方形为例,具体画图时应该怎样做?
预设
生:正方形原来的边长是3个单位长度,现在按2∶1放大后,边长应该是6个单位长度。
②画图。
(学生独立画放大后的正方形,教师巡视指导)
(4)完成例4。
①怎样画长方形?
预设
生:把长方形的长和宽分别放大到原来的2倍,画出长方形。
②怎样画三角形?
预设
生:把直角三角形的两条直角边分别放大到原来的2倍后,连接两条直角边的端点。
(可引导学生用数方格法验证,当直角三角形的两条直角边放大到原来的2倍时,直角三角形的斜边也放大到原来的2倍)
推荐专题: 六年级数学下册解比例教学设计