千文网小编为你整理了多篇相关的《图形与几何教学心得》,但愿对你工作学习有帮助,当然你在千文网还可以找到更多《图形与几何教学心得》。
初中数学几何与图形学习的心得体会
通过学习了庄老师“图形与几何”的教学分析与案例评析专题讲座后,我深有体会,就以下几个方面谈谈感想:
一、空间观念的培养
作为数学学习的核心内容之一 : 学生的空间观念的培养,成为新课程的一大特色,《新课程标准》把“空间观念”作为义务阶段培养学生初步的创新精神和实践能力的一个重要学习内容。
传统的几何课程,内容差不多都是和演绎证明,到了初中后,几乎成了一门纯粹的关于证明的学问。表面上看是遵循了“数学是思维的体操”这一传统要求,但实际上学生的学习积极性、主动性在此过程中被无情地扼杀,数学应有的人文功能、应用功能得不到有效地发挥。尤其是错过了培养学生空间观念的最佳时期。事实上,空间观念是创新精神所必需的基本要素,没有空间观念几乎谈不上任何发明创造。因为许许多多的发明创造都是以实物的形态呈现的,作为设计者要先从自己的想象出发画出设计图,然后根据设计图做出实物模型,再根据模型修改设计,直至最终完善成型。这是一个充满丰富想象力和创造性的探求过程,这个过程也是人的思维不断在二维和三维空间之间转换、利用直观进行思考的过程,空间观念在这个过程中起着至关生要的作用。所以,明确空间观念的意义、认识空间观念的特点、学生的空间观念,对培养学生初步的创新精神和实践能力是十分重要的。这就是《标准》把“空间观念”作为义务教育阶段重要学习内容的原因。按照《标准》描述的空间观念的主要表现,其具体要求是:能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述,利用直观来进行思考.
在这一章的教学过程中,学生动手较多,亲身体验较多,因此在充分挖掘图形的现实模型,充分让学生动手操作,自主探索,合作交流,以积累有关图形的经验和数学活动经验,发展空间观念之外,还应让学生有充分的思考和想象的空间。为此在学习之初,应鼓励学生先动手,后思考;而以后,则应鼓励学生先想象,再动手。
例如,在开展正方体表面展开的教学时,可以让学生先观察正方体,再想象它的展开图,并把脑子里所想的图形画出来,然后再来进行动手操作,这样能充分验证学生对图形的空间想象力。
二、推理能力的培养
标准指出:学生通过义务教育阶段的数学学习,“经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步的演绎推理能力”。演绎推理就是我们熟知的三段论,而合情推理则是指借助归纳、类比、统计等手段得出结论。在初中阶段它是我们问题和解决问题的重要手段。我们第二次教学几何知识是在第四章“平面图形及其位置关系”,这一章除了在探索图形性质、画图、拼摆图形、图案设计的过程中,初步建立空间观念,发展几何直觉外,还要了解一些关于图形的概念,如:直线、射线、线段、角、角度、周角、平角、钝角、直角、锐角和相关的一些性质,进行简单的换算以及两条直线平行和垂直关系等等。其实这些内容小学里就已经学过,这里只是要求学生在小学学过有关知识的基础上能进一步系统地理解和掌握。
在第五章中,三角形是最简单、最基本的几何图形,在生活中随处可见,它不仅是其他图形的基础,在解决实际中也有着广泛的。因此探索和掌握它的基本性质对学生以后更好地认识现实世界,空间观念和推理能力都是非常重要的。
本章中,课本为我们提供了很多现实的有趣的问题情境,使学生经历从现实世界中抽象出几何模型和运用所学解决实际问题的过程,丰富的例子力求使学生能体会数学与生活的密切联系。多种形式的活动如测量、拼图、折纸和设计图案等,给了学生充分实践和探索的空间。为学生空间观念的发展,数学活动经验的积累,个性的发挥提供很好的机会。但我们在应用课本情境时,也要有一定的选择和变动。
三、应用意识的培养
义务阶段的数学学习,关于应用意识的刻画,主要在以下三个方面。
1、认识现实生活中蕴涵着大量的数学信息,数学在现实世界中有着广泛的应用。
2、面对实际问题时能主动尝试着用数学的角度,运用知识和寻求解决问题的策略。
3、面对新的数学知识时,能主动寻找其实际背景,并探索其应用价值。
第七章是“生活中的轴对称”。这一章的学习是为了让学生欣赏体验轴对称在现实生活中的广泛应用和丰富的文化价值。在丰富的现实情境中,经历观察、折叠、剪纸、图形欣赏与设计等数学活动过程,进一步发展空间观念。同时结合现实生活中典型实例了解并欣赏物体的镜面对称,增进学习数学兴趣。
在本章的教学中,我们会发现原来身边有很多轴对称现象,对此学生也有同感,他们不但能发现,而且还能自己进行设计,许多学生设计出了各种各样的美丽图案,然而在这一章中有一个较为重要的知识点:第三节“探索轴对称的性质”。当师生通过观察并生活中的轴对称现象,让学生对轴对称的性质进行探索时,学生空间观念的培养,推理能力的发展,对图形美的感受等都在这些实践活动中得到了逐渐的发展。
图形与几何教学探究
忠州四小
吴娟
数学是研究数量关系和空间形式的科学。在《数学课程标准》中,明确提出数学课程应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。
图形与几何主要研究现实世界中的物体和几何图形的形状、大小、位置关系及其变换,让学生掌握相应的基础知识和基本技能,学会解决简单的实际问题,丰富对现实空间及图形的认识,更好地认识和理解人类的生存空间,发展形象思维,培养空间观念和创新意识。
一、图形与几何在小学数学中的意义
《标准》对传统的几何内容进行了较大幅度的改革,设置了“图形与几何”的领域,主要分为四个部分:图形的认识、测量、图形与变换、图形与位置。学习和应用相应的图形与几何的有关知识和数学学习方法,对于学生更好地认识、理解生活空间,更好地生存和发展有着重要的现实意义。
1、培养学生初步的空间观念。发展学生的空间观念是《标准》中的一个重要目标,也是图形与几何学习的核心目标之一。学生空间观念的形成是建立在观察、感知、操作、思考、想像等的基础上,特别是对于低年级的学生,实际观察和操作是发展空间观念的必备环节。
2、提高学生运用知识解决简单实际问题的能力,增强应用数学的意识。几何知识来源于生产劳动,在生活、生产中有广泛的应用。
3、有助于培养学生学习数学的兴趣,促进学生形成科学精神和科学态度。在拼一拼、量一量等大量的实践活动中,可以使学生体验研究数学的乐趣,积累数学活动经验,逐渐形成科学精神和科学态度。
4、培养和提高学生的审美情趣,发展数学直觉。《标准》把数学定义为理性的艺术。数学不仅有利于发展学生的逻辑思维,而且有利于学生的创造才能的发展。
二、图形与几何教学的目标
图形与几何主要涉及现实世界中的物体、几何体和平面图形的形状、大小、1 位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。要掌握好这一部分的标准,必须引起对如下几个方面的重视:第一,重视学生实际生活经验对几何概念的形成;第二,发挥几何图形本身的作用,以帮助学生正确形成和理解几何概念;第三,及时将所学概念纳入已有系统,促使学生形成新的认知结构;第四,设计新的解法、一方面要注意结果的正确性,另一方面要注意其根据的条理性。
三、图形与几何的教与学
1.教师的角色定位(决定课的设计和组织)
2.学生学法指导——看(观察)、思(寻求解决之路)、议(与同学探讨、辩解)、做(动手实践)、说(获、惑)。 3.现代信息技术的运用。
四、图形与几何的教学原则 1.提供现实情境,激发学习兴趣
图形与几何的教学,应当从学生熟悉的生活环境出发,小学生尽管具备了一定的生活经验,但他们对周围的各种事物、现象有很强的好奇心。所以在教学中,应抓住学生的好奇心,根据教材的特点,结合学生的生活实际,把生活经验数学化,把数学问题生活化。如以教室为情境,让学生认位置;以学生熟悉的搭积木为情境,认识长方体、正方体、圆柱和球等。让学生在这样的情境中主动地学习。
2.注重学生独立思考、自主探索、合作交流,促进学生学习方式的转变 《标准》中提出,动手实践、自主探索与合作交流是学生学习数学的重要方式。图形与几何的教学内容上设计了很多这方面的活动。如“你说我摆”、“观察与测量”、“有趣的图形”、“动手做游戏”等,在合作中进行学习,体验合作学习的必要性和乐趣。同时在相互交流中,不断培养学生的参与意识,通过与他人的交流,感受不同的思维方式和思维过程,学会用不同的方式思考问题,尝试不同的探索方式,不断提高思维水平。在教学中,应为学生提供合作和交流的机会,不应简单地、机械地让学生模仿、记忆教师和书本上的语言。在教学中还要注意在操作过程中引导学生进行思考,把操作与数学思考结合起来。如在学习长方形和正方形的面积之后,提出:“你能和同学一起完成下面的测量和计算吗?①计算 2 《中国少年报》的面积;②计算教室地面的面积;③你还能计算什么面的面积?”
3.注重各部分教学内容的互相渗透,有机结合图形与几何的四个部分:图形的认识、测量、图形与变换、图形与位置不是孤立存在的,在教学中应注意互相渗透。如《标准》中指出的“描述物体的相互位置”、“描述物体所在的方向”。又如“周长”一课,结合图形的认识和测量等知识来计算三角形、平行四边形、长方形和正方形等图形的周长。
4.加强直接感知,发展空间观念,培养创新意识
空间观念是创新精神所需的基本要素之一,所以《标准》把空间观念作为义务教育阶段数学学习内容的核心概念之一,把建立初步的空间观念作为数学方面的一个重要目标。如“位置与顺序”一课,结合生动有趣的情境或活动,让学生体会前、后、上、下、左、右的位置与顺序,会用前、后、上、下、左、右描述物体的相对位置,建立初步的空间观念。又如“认识物体”一课中的练习动手搭出你喜欢的东西,使学生的想像力和创造性得到自由发挥,并能感受复杂物体的形状与简单几何体之间的联系。
5.关注学生的学习过程,不断反思教学设计、教学过程,更好地促进教 《标准》明确提出要关注学生的学习过程,关注学生在数学活动中所表现出来的情感与态度,所以教师应重视学生知识的形成过程。如在“观察与测量”一课中,组织学生测量课桌的长度,他们可能不用标准的测量工具,而是用铅笔、绳子„„作为测量工具,于是学生体会到统一测量单位的必要性。教师不仅要关注测量的结果,更要关注学生是否积极参与活动,能否采用不同的测量方法。又如,一位教师在第一次上“平移与旋转”这一课时,用多媒体显示课本上的图:火车与直升机的运动,并问学生,它们是怎样运动的?学生回答:火车是直着向前走的;车轮带动车走;火车是靠燃料推动走的等。这时教师慌了,不知如何引导下去。课后这位教师反思自己的教学设计,尽量排除非本质的干扰,突出概念的本质属性,于是重新设计了教学内容。这次多媒体显示:缆车、升降电梯、风车和吊扇,学生观察。老师问:它们的运动都相同吗?学生答:不同。师:你们能把它们分分类吗?生:缆车、升降电梯的运动为一类,因为它们都是平平地直走;而风车和吊扇又是一类,因为它们是在固定地旋转。这次改进,使学生很快地进入了对平移与旋转的感知当中。
3 6.运用现代科技手段,创设动态情境,优化教学效果
在几何知识教学中,恰当地运用多媒体,让“静”的知识“动”起来。通过直观的图像、鲜艳的色彩和逼真的音响,刺激学生的多种感官,创设动态的教学情境,促使学生积极思维、大胆想像、优化教学效果。
7.注意教学中,渗透思想品德教育
新课程非常注意对学生进行潜移默化的思想教育,而不是直白的说教。如“左右”一课中,渗透走路要靠右侧通行,上课举右手发言。“认识图形”中,有一个十字路口的场景,渗透让学生遵守交通规则。这些内容通过小学生熟悉的生活场景,使学生受到了思想品德教育,培养良好的公民素质。
五、图形与几何的教学注意些什么。
(一)、图形与几何的教学应凸显现实性
弗赖登塔尔说过:“数学来源于现实,高于现实,用于现实”。学生年龄虽小,但在生活中积累了一定的生活经验,形成了不少的数学表象,教师在教学中应利用学生己有的生活经验,引导学生把课堂中所学知识和方法应用于生活实际中,让学生运用所学知识,解决生活问题,学以致用。这样既可以加深对数学知识的理解,激发学生将头脑中已有知识“再加工”,又能让学生切实体验到生活中处处有数学,同时也锻炼了学生的思维,培养了学生的创新意识和实践能力。
如教学“圆的认识”一课时,在学生探究发现掌握了圆的基本特征后,紧接着创设学生熟悉的投篮游戏,提出了“玩投篮游戏时同学们应站成什么队型?为什么?”这样一个问题让学生思考,学生根据生活经验和学到的新知,回答:“站成圆形,因为这样公平,每个人离篮筐的距离相等。”接着又问:“车轮为什么都要做成圆形而不是三角形、正方形、椭圆形呢?”学生结合圆心到圆上的距离相等的知识推理出:用圆形做车轮,车子行驶时平稳,而三角形、正方形、椭圆形的中心到边上的距离不等,车子行驶时不平稳的结论。把学生生活中所熟悉的事例作为数学素材,紧密联系学生的生活实际,反映学生身边数学,使学生感到亲切、自然、有趣,增强了学生对数学的理解和应用数学的信心,学会运用数学的思维方式去观察、分析现实社会,去解决现实生活中的问题。
(二)、图形与几何的教学应注重操作性
《新课标》突出了将“过程”作为数学课程内容的一部分,非常注重“让 4 学生在观察、操作活动中获得直观的经验,在丰富多彩的探索活动中经历过程与体验实例”,强调了数学知识的来龙去脉,强调了对数学知识的自主建构。
“空间观念的形成,只靠观察是不够的,教师还必须引导学生进行操作实验活动,让他们自己比一比、折一折、剪一剪、拼一拼、画一画”。学生或许会相信你所告诉他们的,但他们更愿意自己去经历,去实践,因为他们希望自己是一个发现者、探索者,更希望自己是一个成功者。所以,教师要为学生提供一切创造探索的机会。如教学“体积和体积单位”时,为了让学生更好地感受1立方米的大小,我用3根1米长的铁丝借助墙角搭建了一个1立方米的空间,让学生蹲到里面感受一下大小,钻进去两个学生,孩子说里面空间还很大,最后里面容纳了六七名学生,学生在体验中自然感受到1立方米的大小。1立方米的空间大约能容纳六七名学生的情境将深深地在孩子的心里扎根,帮助他们形成了关于1立方米的表象。
再如教学《角的度量》的时候,角的度量这部分内容的学习对学生来说是个难点。因为这部分内容数学概念多,(如中心点、零刻度线、内刻度线、外刻度线都是一些抽象的纯数学语言)知识盲点多,几乎没有旧知识作铺垫,操作程序复杂:顶点和中心点重合,零刻度线和角的一边重合,看另一边在量角器上的刻度,还要分清内外刻度,(尤其是反向旋转的和不同方位的角)。
要找到解决难点的策略,必须分析造成难点的原因.我认为学生之所以分不清内外圈,找不对数的方向,原因是把角看作是静止的图形而非动态的过程,他们将角的两边孤立地量度,以为像量线段,看钟表一样,只要把一边对准0度,另一条指着几就读几.如果学生能把静态的角想象成从0度开始,慢慢打开,而度数随之增加的动态过程,我想问题就能迎刃而解了.由此,我认为应采取"变静态为动态"的教学策略,并通过三个层次的活动来实现.具体实施如下:
活动一:伸展运动.我带着学生把两手臂伸开,当作角的两条边,把身体当作角的顶点.他们跟着我从两臂重合开始,一臂不动,另一臂慢慢展开,并一起读:0度,1度,2度,3度,4度,5度,10度,20度„„到90度时停下来感受一下.然后继续:100度,110度„„180度,„„,360度.然后我引导说:我们可以这样想象,所有的角都是从0度慢慢张开的.5
这个活动学生很感兴趣,通过自己的肢体语言感受到角从0度张开的过程.虽然所指度数并不精确,但为后面在量角器上想象角的动态变化奠定了最直观的基础.活动二:穿针引线.刚才的肢体动作只是粗线条的感受,而第二个活动则开始进入精细化的认识了.学生已经在课前预习了量角器的外部特征,汇报后我拿出一张白纸,在上面画出一条射线,再用一根带黑线的针从射线的端点处穿出.这样,纸上的射线和穿出来的黑线就能形成动态的角了.我把量角器摆在上方,在实物投影中大大地演示出来.从0度开始,师问:"这时角的边所对应的刻度有两个:0度和180度, 该读哪一个 往下数的时候数内圈还是外圈 "学生很聪明,立即回答说"读0度,该读外圈."随着老师缓慢地拉动针线,学生从外圈0度开始,也逐一读出了相应的数据,一直读到180度.接着,我又换了一个方向,从另一边的0度开始,这回学生反应可快了,"读内圈,因为这次的0度在里面!"„„
学生在动态中进一步感受到角的度数的变化过程,并明白了当选择不同方向为0度时,读数方向也随之改变的原理.这一活动为学生度量静止的角奠定了表象基础.活动三:笔尖指路.这一活动则是测量完全静止的角了,也是本节课最终要达到的目标.我在实物投影中呈现了一个完整的角,提出问题:"这个固定的角,你能想象出它是怎样展开的吗 "学生有两种意见,一种是把右面的边视为0度,慢慢展开;另一种是把左面的边视为0度而慢慢展开,同学们认为都是可以的.于是按不同的展开方向,我们共同确定了0度所在的圈,并从0度开始,用笔尖顺着数据增加的方向慢慢移动,边移动边读出整十,整五的数,直到接近角的另一条边,将度数准确读出.结束了三个活动后,我问学生:量角的时候,要特别注意什么 学生回答说:"一定要从0度开始顺着数下去."是的,这正是量角的关键,他们学会了.聪明的孩子掌握原理后很快就能找到最接近整十,整五的刻度再进行加减;学习比较困难的学生则乖乖的从0开始,顺着方向将可见的度数一一读出.虽然速度会慢了些,但方法掌握了,相信熟练后就会快起来.(三)、图形与几何的教学应重视探究性
著名数学家波利亚说过:“学习任何知识的最佳途径是由学生自己去发现。6 因为这种发现,理解最深,也最容易掌握其中的内在规律和联系。”教师无法代替学生自己的思考,更代替不了几十个差异的学生的思维。我们应该让每个学生根据自己的体验,用自己的思维方式自由地、开放地去探究、发现,去再创造有关的数学知识的过程。使学生不仅在于获得数学知识,更在于让学生在探究的过程中学习科学探究的方法,从而增强学生的自主意识,培养学生的探索精神和创造能力。
教师应从学生的生活经验和已有的知识背景出发,向学生提供充分的数学活动和数学交流的机会,鼓励学生动手操作、动手实践,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识和技能、基本的数学思想和方法,获得广泛的数学活动经验,在操作实践中发展空间观念。如教学“轴对称图形”时,为了让学生判断哪些基本的平面图形是轴对称图形,我组织学生借助课前准备的学具(长方形、平行四边形、梯形等基本的平面图形),以小组合作的方式,通过动手操作,找出其中的轴对称图形,并画出其对称轴。这样学生通过折一折、比一比、画一画,很轻松地就判断出其中的轴对称图形,并画出了相应的对称轴。在判断平行四边形是否是轴对称图形时,学生出现了争议,我再次组织学生借助手中的平行四边形折一折。再次操作之后,一个学生说:“把这种普通的平行四边形无论怎样折,两边不能完全重合,所以这样的平行四边形不是轴对称图形!”另一个学生马上说:“我手里的平行四边形沿着两条对角线对折,两边能完全重合,所以这个平行四边形是轴对称图形!”真有骑虎难下之势,我马上借题发挥:“大家快看看后一个平行四边形有没有什么特殊的地方呢?”学生通过观察和比较发现这个平行四边形四条边都相等,我适时告诉学生这样的平行四边形是菱形。这时马上有学生站起来发言:“一般的平行四边形不是轴对称图形,而有些特殊的平行四边形是轴对称图形,比如菱形!”还有学生继续补充:“还有长方形和正方形,它们都是特殊的平行四边形,也都是轴对称图形!”学生的实践、探究和发现一浪高过一浪,学生的思维碰撞出了火花!我想这样对于知识的提炼和升华皆源于先前的动手操作和自主探究。没有这样的操作和探究,学生就不会轻松地理解知识,学生就不会对知识有如此的深化和提升,更不会有思维的撞击和成功的体验!
四、图形与几何的教学应注意把握数形结合。
《图形的放大与缩小》是新旧教材《比例》这一内容的最大不同之处。它是 7 属于空间与图形领域中图形与变换方面的内容,比例的知识属于数与代数领域。新教材将《图形的放大与缩小》纳入到比例单元中,将两条线交织在一起。我认为主要是体现数形结合的思想,使知识形成和发展的基础更加扎实。就本课而言“从简单图形开始,借助实物或计算机演示,再让学生动手操作,由此充分体验图形的相似是指图形运动后,大小发生了变化,但形状不变,前后图形是相似的。
图形的放大与缩小,学生具有一定的生活经验,有自己的朴素认识。但是,这一认识是感性的、概括的、模糊的,只能是基于自身经验的理解,不能清楚地用数学的语言描绘变化的关系。而数学上的图形放大与缩小则是指按一定比例放大与缩小,它是一种定量的刻画。这一差距正是我们进行教学时需要加以利用的。教学中,我先出示很小图片,由于太小,学生就产生让老师将图像放大的想法。图形的放大与缩小学习的价值自然就蕴含其中。接着我出示了三幅图片(B、只放大长、C、只放大宽、D、长和宽都按一定比例放大),不出现数据。让学生说说自己的想法(此时由于图形B、C变形比较严重,一致认为D放大比较好)。我适时提问:为什么D比较好呢?在学生思考的时候我出现了相关的数据。经过学生的观察、讨论与交流,学生对于图形放大后相应边的变化有了清晰的认识,完成了真实的数学理解过程。在这一过程中不同的学生有了自己独特的体验。其次是做到重视放大与缩小的比的理解。用数学的语言来表述图形放大与缩小的过程,我觉得按什么比放大与缩小比较难理解。教学中,当学生用自己的语言描述了图形A到图形D的变化过程后,我随之追问:“我们怎样将图形D变为图形A”。你怎样理解图形的放大与缩小?你是怎样理解 “2:1”的?”(1、我觉得这个比是现在与原来的比。
2、我有一个重大的发现,将图形放大比的前项就大,将图形缩小比的后项就小。
3、要说清楚是按怎样的比放大或缩小的,只要先算出对应边的比,再看看是放大还是缩小,将前项或后项调整一下就行了„„学生的智慧碰撞,内心的欣喜溢于言表)通过教学,使我深深地认识到,学生脑中并不是一片空白,他们是重要的教学资源。
总之,小学数学中的“图形与几何”教学内容丰富,与实际生活联系紧密,但随着课程改革的不断推进,一定还有很多亟待解决的问题。只要我们从学生的实际出发,加大教学研究的力度,敢于实践,锐意创新,我们关于“图形与几何”的探究一定会硕果累累!8
10月,我有幸参加了新场乡中心小学小学数学教师数学技能大赛赛。感谢区教研室为我们搭建了一个展示自我、相互观摩、学习、切磋的平台,调动了我们不断学习、共同提高自身业务水平的积极性,切实促进了教师的专业化成长。也感谢学校领导给了我这次锻炼的机会,并感谢刘老师、杨老师给予我无私的指导与帮助,让我在这次锻炼中得到了提高。
本次比赛,为时2天,可谓紧张而充实,考核非常全面。现在回想起来,我感觉所收获的不仅是一纸证书,而在于准备和参与比赛的全过程。在这个过程中,有因为失误深深的自责与沮丧,又有那柳暗花明的意外与惊喜,有赛前的忙碌紧张,又有赛后的反思与总结…,它让我有了从未有过的经历,有了从未有过的体会。下面就把我最深的感受与大家分享。
一、在学习中提高
本次比赛的内容有:数学解题比赛,现场评课,粉笔字板书设计,即兴演讲,设计教学方案,制作教学课件,最后上一堂20分钟的展示课。这么多内容怎样在短时间内进行高效的复习呢?于是我对自己进行了全面的分析:我执教过2―6年级的数学,对小学阶段的数学学科知识有一定的把握,但对中学的数学知识有所淡忘。其次,即兴演讲是自己从未接触的项目,感觉无从下手,也无法准备。让我感觉十分头痛。
在复习准备的这段时间,我又重新翻开了小学奥数、中学代数;也上网查了很多即兴演讲、评课的技巧,观摩了很多即兴演讲的范例和视频。甚至试着去猜题目,写稿子。这样的日子,虽然紧张、忙碌,但又十分充实。无论是数学解题,还是评课、演讲,各方面都有了不少的提升。在收获的同时我也看到了自己的不足:读书学习过于功利,知识的积累应该是一个长期积淀的过程,而非临阵磨枪、一蹴而就的。直到需要用时才进行突击,往往只能起到安慰剂的作用。作为教育一线的老师,有时也应静下心来多看看书,积累知识,不仅仅是专业知识。
二、在参与中体验
在本次比赛中,让我印象最深刻的是即兴演讲:准备3分钟,演讲3―5分钟。按理说我们教师每天都面对学生不停地讲话,这应该不成问题,但实际并非易事。参赛的老师们,有的因为过于紧张,思绪混乱,语无伦次;有的人纯粹答题,而忘了这是演讲;当然也有人滔滔不绝,声情并茂。看来即兴演讲考验的不仅是你的知识贮备情况,理论功底,语言表达能力,也要考验你是否拥有良好的心理素质。良好的心理素质和正确的心态是获得好成绩的重要条件之一。在比赛中一定要把握好自己的心态,以平常心看待某一点的得与失。
三、在反思中成长
曾在不同的场合听不同的老师说过同一句话:每参加一次活动就经历了一次成长。的确,在与其他青年教师竞争的过程中,我发现自己虽然不是多么优秀,却收获了一种积极的进取心。同时,通过大赛,自己的教学基本功及综合素质也得到了检验和提高。从而让我深深意识到要重新审视自身的学术水平和业务状况,不断学习,拓宽思路,走出平庸,学有专长,教有特色。
技能大赛,考察的是教师是否有扎实的基本功,因为它是教学的保障。但是,有了扎实的教学基本功,不一定会有高效的课堂,犹如有了上佳的陶泥,却不一定能烧制出上乘的陶器一样。因为塑形、彩绘以及火候的把握,除了需要缜密的心思、高超的技艺外,还要具备“视材而定”的随机调控能力。而这样的能力既需要学习,更需要实践,还需要反思。所以,我会把这次大赛出现的问题当作自己提高的契机,在反思的过程中,寻找改进和提高的有效良策。只有这样,才会逐渐改进不足,不断提高自己的课堂效率和教学水平,使自己能更快地专业成长。
推荐专题: 图形与几何教学心得